EM-алгоритм
EM-алгоритм (англ. Expectation-maximization (EM) algorithm) — алгоритм, що використовується в математичній статистиці для знаходження оцінок максимальної схожості параметрів ймовірних моделей, у випадку, коли модель залежить від деяких прихованих змінних. Кожна ітерація алгоритму складається з двох кроків. На E-кроці (expectation) вираховується очікуване значення функції правдоподібності, при цьому приховані змінні розглядаються як спостережувані. На M-кроці (maximization) вираховується оцінка максимальної схожості, таким чином збільшується очікувана схожість, вирахувана на E-кроці. Потім це значення використовується для E-кроку на наступній ітерації. Алгоритм виконується до збіжності.
Часто EM-алгоритм використовують для розділення суміші функції Гауса.
Нехай — деяке з значень спостережуваних змінних, а — прихованні змінні. Разом і утворюють повний набір даних. Взагалі, може бути деякою підказкою, яка полегшує рішення проблеми у випадку, якщо вона відома. Наприклад, якщо є суміш розподілів, функція правдоподібності легко виражається через параметри відокремлених розподілів суміші.
Покладемо — густину імовірності (в безперервному випадку) або функція ймовірностей (в дискретному випадку) повного набору даних з параметрами : Цю функцію можна розуміти як правдоподібність всієї моделі, якщо розглядати її як функцію параметрів . Зауважимо, що умовний розподіл прихованої компоненти при деякому спостереженні та фіксованому наборі параметрів може бути вираженим так:
- ,
використовуючи розширену формулу Байеса і формулу повної ймовірності. Таким чином, нам необхідно знати тільки розподіл спостережуваної компоненти при фіксованій прихованій і ймовірності прихованих даних .
EM-алгоритм ітеративно покращує початкову оцінку , обчислюючи нові значення оцінок і так далі. На кожному кроці перехід до від виконується таким чином:
де — математичне сподівання логарифма правдоподібності. Іншими словами, ми не можемо відразу обчислити точну правдоподібність, але за відомими даними () ми можемо знайти апостеріорну оцінку ймовірностей для різних значень прихованих змінних . Для кожного набору значень і параметрів ми можемо обчислити математичне сподівання функції правдоподібності з даного набору . Воно залежить від попереднього значення , бо це значення впливає на ймовірності прихованих змінних .
обчислюється таким чином:
тобто умовне математичне сподівання при умові .
Іншими словами, — це значення, максимізуючи (M) умовне математичне сподівання (E) логарифма правдоподібності при даних значеннях спостережуваних змінних і попередньому значенні параметрів. У безперервному випадку значення вираховується так:
За певних обставин зручно розглядати EM-алгоритм як два чергуються кроку максимізації.[1][2] Розглянемо функцію:
де q — розподіл ймовірностей неспостережуваних змінних Z; pZ|X(· |x;θ) — умовний розподіл неспостережуваних змінних при фіксованих спостережуваних x і параметрах розподілення ймовірностей неспостережуваних змінних θ; H — ентропія і DKL — відстань Кульбака — Лейблера.
Тоді кроки EM-алгоритму можна показати як:
- E(xpectation) крок: Вибираємо q, щоб максимізувати F:
- M(aximization) крок: Вибираємо θ, щоб максимізувати F:
- ↑ Neal, Radford; Hinton, Geoffrey (1999). Michael I. Jordan (ред.). A view of the EM algorithm that justifies incremental, sparse, and other variants (PDF). Learning in Graphical Models. Cambridge, MA: MIT Press: 355—368. ISBN 0262600323. Архів оригіналу (PDF) за 7 червня 2020. Процитовано 22 березня 2009.
- ↑ Hastie, Trevor; Tibshirani, Robert; Friedman, Jerome (2001). 8.5 The EM algorithm. The Elements of Statistical Learning. New York: Springer. с. 236–243. ISBN 0-387-95284-5.