Робота виходу

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Робо́та ви́ходу — найменша кількість енергії, яку необхідно надати електрону для того, щоб вивести його з твердого тіла у вакуум. Робота виходу є характеристикою речовини.

Робота виходу дорівнює різниці значень енергій рівня вакууму і рівня Фермі , тобто мінімальна енергія, яку необхідно надати електрону для його «безпосереднього» видалення з обсягу твердого тіла, зазвичай металу або напівпровідника:

Тут «безпосередність» означає те, що електрон видаляється з твердого тіла через дану поверхню і переміщається в точку, яка розташована достатньо далеко від поверхні за атомними масштабами, щоб електрон пройшов весь подвійний шар, але достатньо близько, порівняно з розмірами макроскопічних граней кристала.

Як і будь-яку іншу енергетичну характеристику роботу виходу можна вимірювати в джоулях, але на практиці здебільшого її вимірюють в електронвольтах (еВ).

Типові величини роботи виходу лежать у діапазоні 3-5 еВ.

Можливі позначення: тощо.

Суть явища[ред. | ред. код]

Від'ємно заряджені електрони притягаються до додатно заряджених ядер атомів. У твердих тілах, зокрема металах, частина електронів відносно вільна — не зв'язана із конкретними атомами. Проте ці електрони зв'язані із загальною структурою металу. Для виходу за межі твердого тіла електрон повинен подолати силу притягання додатно зарядженої кристалічної ґратки. Тому для виходу з твердого тіла електрон повинен мати певну характерну для даного твердого тіла енергію. Цю енергію він може набути різними способами: випадково внаслідок теплового руху (термоелектронна емісія, поглинаючи квант світла (фотоефект), в зовнішньому електричному полі. Величина цієї мінімально необхідної енергії отримала назву роботи виходу.

Робота виходу є важливою характеристикою металів, яка визначає, чи може такий метал бути гарним електродом. Лужні метали мають найменші роботи виходу, проте їхнє використання обмежене низькою стійкістю щодо корозії.

Визначення та коментар[ред. | ред. код]

Роботу виходу знаходять як де енергія рівня вакууму береться на невеликій відстані від місця виходу електрона зі зразка, хоча й значно більшій, ніж стала кристалічної ґратки.

При віддаленні електрона від поверхні його взаємодія з зарядами, що залишаються всередині твердого тіла, призводить до індукування поверхневих зарядів (у електростатиці для розрахунку взаємодії застосовують «метод зображення заряду»). Віддалення електрона на нескінченність відбувається в полі індукованого поверхневого заряду на що потрібна додаткова робота, яка залежить від діелектричної проникності речовини, геометрії зразка і властивостей усіх його поверхонь.

При знаходженні величини віддалення від конкретної грані вважається невеликим, і ця додаткова робота не враховується. виявляється різною для різних кристалографічних площин поверхні речовини. На відміну від робота з переміщення електрона далі в нескінченність не залежить від того, через яку площину видалено електрон, зважаючи потенціальність електростатичного поля.

Робота виходу у фотоефекті[ред. | ред. код]

Робота виходу в зовнішньому фотоефекті — мінімальна енергія фотонів, необхідна для видалення електрона з речовини під дією світла при .

Робота виходу з різних металів[ред. | ред. код]

Одиницею вимірювання роботи в SI є джоуль, але у фізиці твердого тіла прийнято використовувати електронвольт (еВ). Діапазони зміни роботи виходу для типових кристалографічних площин наведено в таблиці[1][2]:

Елемент еВ Елемент еВ Елемент еВ Елемент еВ Елемент еВ
Ag: 4,52 — 4,74 Al: 4,06 — 4,26 As: 3,75 Au: 5,1 — 5,47 B: ~4,45
Ba: 2,52 — 2,7 Be: 4,98 Bi: 4,31 C: ~5 Ca: 2,87
Cd: 4,08 Ce: 2,9 Co: 5 Cr: 4,5 Cs: 2,14
Cu: 4,53 — 5,10 Eu: 2,5 Fe: 4,67 — 4,81 Ga: 4,32 Gd: 2,90
Hf: 3,9 Hg: 4,475 In: 4,09 Ir: 5,00 — 5,67 K: 2,29
La: 3,5 Li: 2,93 Lu: ~3,3 Mg: 3,66 Mn: 4,1
Mo: 4,36 — 4,95 Na: 2,36 Nb: 3,95 — 4,87 Nd: 3,2 Ni: 5,04 — 5,35
Os: 5,93 Pb: 4,25 Pd: 5,22 — 5,6 Pt: 5,12 — 5,93 Rb: 2,261
Re: 4,72 Rh: 4,98 Ru: 4,71 Sb: 4,55 — 4,7 Sc: 3,5
Se: 5,9 Si: 4,60 — 4,85 Sm: 2,7 Sn: 4,42 Sr: ~2,59
Ta: 4,00 — 4,80 Tb: 3,00 Te: 4,95 Th: 3,4 Ti: 4,33
Tl: ~3,84 U: 3,63 — 3,90 V: 4,3 W: 4,32 — 5,22 Y: 3,1
Yb: 2,60[3] Zn: 3,63 — 4,9 Zr: 4,05

Робота виходу для напівпровідника[ред. | ред. код]

Зонна діаграма напівпровідника

Для напівпровідників робота виходу визначається так само, як і для металів (і дані для деяких власних напівпровідників включено в таблицю).

На практиці напівпровідник зазвичай легований і величина залежить від типу і концентрації легувальних домішок. Рівень за сильного легування донорами міститься біля краю зони провідності , а за сильного легування акцепторами — поблизу краю валентної зони (відповідно, варіації становлять близько ширини забороненої зони ).

Універсальнішою величиною, замість для напівпровідників є енергія спорідненості до електрона, рівна Наприклад, для кремнію спорідненість становить 4,05 еВ, а робота виходу приблизно від 4,0 до 5,2 еВ (для власного матеріалу близько 4,6 еВ).

Див. також[ред. | ред. код]

Примітки[ред. | ред. код]

  1. Робота виходу може залежати від грані монокристала або від грані, що переважає на поверхні текстури металу. Наприклад, Ag: 4,26; Ag(100): 4,64; Ag(110): 4,52; Ag(111): 4,74.
  2. CRC Handbook of Chemistry and Physics 97th edition (2016—2017), розділ 12, стор 123.
  3. Nikolic, M. V.; Radic, S. M.; Minic, V.; Ristic, M. M. The dependence of the work function of rare earth metals on their electron structure // Microelectronics Journal : journal. — 1996. — Vol. 27, no. 1 (2). — P. 93—96. — ISSN 0026-2692. — DOI:10.1016/0026-2692(95)00097-6. Процитовано 2009-09-22.[недоступне посилання з жовтня 2019]

Література[ред. | ред. код]

  • Solid State Physics, by Ashcroft and Mermin. Thomson Learning, Inc, 1976