Двигун внутрішнього згоряння

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Мал. 1. Компресія у 4-тактному ДВЗ

Двигу́н вну́трішнього згоря́ння — тип двигуна, теплова машина, в якій хімічна енергія палива, що згоряє в робочій зоні, перетворюється в механічну роботу. Поряд із електричним двигуном двигун внутрішнього згоряння є одним із найпоширеніших типів двигунів. Найчастіше він використовується у транспортних засобах: автомобілях, мотоциклах, поїздах, морському транспорті тощо. Двигуни внутрішнього згоряння застосовуються також в автономних електричних генераторах для виробництва електроенергії.

Назва[ред.ред. код]

Назва двигуна внутрішнього згоряння пов'язана з тим, що на відміну від парової машини горіння відбувається в закритій камері, в яку спеціально сконструйованими системами подається рідке або газоподібне паливо та повітря, кисень у складі якого виконує роль окисника. Гарячі гази, що утворюються при згорянні палива, створюють значний тиск, який змушує рухатися поршень, таким чином перетворюючи теплову енергію в механічну роботу.

Історія[ред.ред. код]

Принцип внутрішнього згоряння неодноразово пропонувався для конструкції двигунів, але практичні двигуни внутрішнього згоряння почали виготовляти тільки в другій половині XIX століття. До розроблення різноманітних інженерних рішень, необхідних для роботи двигуна, доклали зусиль багато різних інженерів. Винахідником двигуна внутрішнього згоряння часто називають Ніколауса Отто, який у 1862 році розпочав виробництво й продаж двотактних двигунів. У 1876 Отто сконструював чотиритактний двигун, проте йому не вдалося запатентувати свій винахід, тому принцип роботи чотиритактного двигуна став загальною основою для багатьох розробок. Патент на чотиритактний двигун отримав ще в 1862 Альфонс Бо де Роша. Перший бензиновий двигун сконструював Карл Бенц. Рудольф Дізель побудував перший дизельний двигун із високим коефіцієнтом корисної дії в 1897 році.

Німецькі інженери Готліб Даймлер та Вільгельм Майбах були серед піонерів конструювання автомобілів та мотоциклів, процесу який розвивався паралельно з вдосконаленням двигунів.

Конструкція і принцип дії[ред.ред. код]

Механічна система двигуна внутрішнього згоряння сконструйована таким чином, що його робота розбивається на послідовність періодичних циклів, кожен із яких складається з кількох тактів. Один із тактів робочий, під час цього такту розширення гарячих стиснених газів призводить до руху поршня, інші виконують допоміжні функції, серед яких всмоктування палива та повітря, звільнення робочої камери від відпрацьованих продуктів згоряння тощо. Найпоширеніші конструкції двигунів внутрішнього згоряння — двотактні та чотиритактні.

Принцип роботи двотактного двигуна, обладнаного вихлопною трубою

Винахідником одного із двотактних двигунів був українець родом з Галичини Михайло Кос, двигун запатентований під назвою «Кос-мотор».

Серед різноманітних конструкцій двигунів внутрішнього згоряння найчастіше зустрічаються дизельні та карбюраторні. В дизельних двигунах паливо впорскується безпосередньо в стиснене повітря і загоряється у процесі впорскування. В карбюраторних двигунах використовується спеціальний пристрій, карбюратор, в якому створюється суміш палива та повітря. Запалювання суміші в карбюраторних двигунах потребує електричної іскри.

До двигунів належать також газові турбіни, повітряно-реактивні двигуни та більшість інших ракетних двигунів.

Мал. 2. Схема роботи чотиритактного двигуна внутрішнього згоряння. Такти:
1. Впуск.
2. Стиснення.
3. Робочий хід.
4. Випуск

Принцип дії двигуна внутрішнього згоряння можна розглянути на прикладі чотиритактного карбюраторного двигуна. Основним елементом такого двигуна є циліндр, усередині якого відбувається згоряння палива. Як правило, їх кілька. Тому кажуть про одно-, дво-, чотири-, п'яти-, шести-, восьми-, дванадцяти-, шістнадцяти та навіть вісімнадцятициліндрові двигуни. У кожному циліндрі встановлено рухомий поршень.

Циліндр має два чи більше отворів з клапанами — впускними і випускними. Робота двигуна внутрішнього згоряння ґрунтується на чотирьох послідовних процесах — тактах, які весь час повторюються. Перший такт — це впуск пальної суміші, що здійснюється через впускний клапан, коли поршень рухається вниз. Після того, як поршень досягне нижньої мертвої точки, чи після її проходження, всмоктування палива припиняється і впускний клапан закривається. Під час другого такту, коли поршень рухається вгору, відбувається стискання суміші, внаслідок чого її тиск і температура підвищуються. У верхній мертвій точці положення поршня (чи близько неї) суміш запалюється електричною іскрою від свічки запалювання. Суміш миттєво спалахує, через значне нагрівання повітря і продукти згоряння розширюються й тиснуть на поршень. Сила тиску штовхає поршень донизу, відбувається третій такт — робочий хід, під час якого виконується робота. За допомогою шатунного механізма рух поршня передається колінчастому валу, який з'єднано з колесами автомобіля за допомогою трансмісії. Виконуючи роботу, суміш розширюється й одночасно охолоджується. Після проходження поршнем нижньої мертвої точки або близько неї відкривається випускний клапан і під час руху поршня вгору продукти згоряння палива витісняються із циліндра через випускний клапан, який закривається після проходження поршнем верхньої мертвої точки. Протягом короткого проміжку часу і випускний і впускний клапани перебувають у відкритому стані. Цей стан називають «перекриттям клапанів».

Пальне[ред.ред. код]

У якості пального для двигунів внутрішнього згоряння використовуються продукти переробки нафти: бензин, гас, дизельне пальне, зріджений нафтовий газ. Двигуни внутрішнього згоряння можуть працювати також на зрідженому природному газі та спиртах: етанолі й метанолі. Синтетичне паливо для використання у двигунах внутрішнього згоряння отримують із природного газу, вугілля або біомаси завдяки процесу Фішера-Тропша.

У майбутньому у якості палива може використовуватися водень, який має ту перевагу, що продуктом його згоряння є вода, однак для використання водню необхідно подолати технічні проблеми, зв'язані з великими об'ємами необхідних паливних баків.

Різновиди за способом запалювання паливної суміші[ред.ред. код]

Двигуни внутрішнього згоряння із примусовим запалюванням[ред.ред. код]

В двигунах внутрішнього згоряння із примусовим запалюванням (із запалюванням від іскри) використовуються палива, які легко утворюють горючі суміші з повітрям і характеризуються досить високою стійкістю до передчасного самозапалювання. У таких двигунах паливна суміш або готується попередньо в карбюраторі, або утворюється при впорскуванні палива в систему паливоподачі чи безпосередньо у циліндри. Карбюраторні двигуни є найбільш поширеним типом двигунів, які використовують бензин. В останні роки вони витісняються двигунами з безпосереднім впорскуванням бензину, але в ряді країн, зокрема в Україні, ще довго будуть займати провідне місце. ККД карбюраторного двигуна може досягати 33-36%, однак при епізодичних і часткових навантаженнях він істотно менший і становить 15-20%. Це обумовлюється зменшенням термічного ККД при неповних завантаженнях, коли дроселювання подачі палива приводить до зниження тиску в камері згоряння. З урахуванням того, що в міських умовах автомобільні двигуни працюють у змінному режимі, середній ККД їх невеликий.

Цього недоліку позбавлені двигуни з безпосереднім впорскуванням палива, в яких подача палива регулюється електронною системою в залежності від навантаження двигуна. Такими двигунами обладнується переважна більшість нових легкових автомобілів у США і європейських країнах. Однак системи впорскування палива працюють у жорсткому тепловому режимі і висувають підвищені вимоги до якості палива.

У 1954 р. Ф. Ванкель сконструював роторно-поршневий двигун, який має ряд переваг у порівнянні зі звичайними поршневими. Зокрема, двигун Ванкеля менш чутливий до октанового числа палива, має менші масу й габарити, легше форсується. Недоліки двигунів Ванкеля — підвищений вміст вуглеводнів у відпрацьованих газах і більш висока, в порівнянні з чотиритактним двигуном, питома витрата палива (на 7-10%), що є перешкодою до широкого застосування. Проте, японська фірма MAZDA на початку 1990-х років випускала близько 150 тис. автомобілів на рік, обладнаних роторно-поршневими двигунами; виробництво мотоциклів і автомобілів з цими двигунами освоєно й у деяких інших країнах.

При роботі двигуна на низькооктанових бензинах і в несприятливих умовах спостерігається детонація, тобто вибухове горіння суміші в камері згоряння з утворенням ударних хвиль. Це приводить до підвищеного зношування деталей двигуна та небезпеки його пошкодження, а також до неповного згоряння палива, підвищеної димності і токсичності відпрацьованих газів. Відомо, що основною причиною детонації є самозаймання окремих ділянок горючої суміші в камері згоряння, що відбувається раніше того моменту, як до них дійде фронт полум'я від свічки запалювання. Перед самозайманням компоненти палива попередньо окиснюються, чому сприяє висока температура, яка розвивається при стисканні. Та частина горючої суміші, що вже згоріла, внаслідок високої температури і високого тиску, починає стискати ту частину горючої суміші, що ще не згоріла. Внаслідок лавиноподібного наростання температури і тиску виникає ударна хвиля, швидкість розповсюдження якої, значно перевищує швидкість розповсюдження звуку в даному середовищі. Вдаряючи в стінки камери згоряння і днище поршня, ударна хвиля поступово руйнує їх. При чому, руйнуються ті частини камери згоряння, які найбільше віддалені від свічки запалювання. Виникнення детонації супроводжується характерним дзвінким «стуком», що надходить від камери згоряння, і може вловлюватися спеціальним датчиком. Датчик має вплив на блок регулювання кута випередження запалювання, зменшуючи цей кут до тих пір, поки детонація не зникне.

Для запобігання детонації бензини повинні мати достатню стійкість до самозаймання, що виражається октановим числом (ОЧ) палива. Вимоги до октанового числа залежать від ступеня стиснення і конструкції камери згоряння. Для кожного двигуна, що використовує бензин, існує оптимальне значення ОЧ, пов'язане зі ступенем стиснення (ε) і діаметром (D в мм) емпіричною залежністю:

ОЧ = 125,4 — 413/ε + 0,189•D .

З формули випливає, що октанове число не може бути більше 141.

Двигуни внутрішнього згоряння із запалюванням від стиснення[ред.ред. код]

Двигуни із запалюванням від стиснення (дизельні). Двигун із запалюванням від стиснення був запропонований Р.Дізелем у 1897 р. Він виявився менш вимогливим до палива, ніж карбюраторний двигун, і міг працювати практично на всіх видах палива, аж до мазутів. У Росії в 1898 р. на заводі «Російський дизель» був розроблений двигун, що працює на сирій нафті. Протягом ХХ ст. двигун Дізеля одержав величезне поширення. Його термічний ККД вище, ніж у двигунів, що працюють за циклом Отто, і для вихрокамерних двигунів досягає 36%, а для двигунів з безпосереднім впорскуванням — 42%. Якщо ж врахувати, що на різних режимах він практично однаковий, то середній ККД може майже вдвічі перевищувати ККД карбюраторного двигуна. Для всіх типів двигунів при часткових навантаженнях дещо знижується механічний ККД, через втрати потужності на тертя. Це пояснюється високими ступенями стиснення, які можуть бути досягнуті на дизельному двигуні. Дизельні двигуни поділяють на високо-, середньо- і низькообертові, для кожного типу призначене своє пальне. Швидкообертові двигуни встановлюють в основному на автомобілях. Для них призначене паливо, яке називають дизельним. Основні транспортні засоби, які використовують швидкообертові дизелі, — вантажівки, але в деяких країнах заохочується обладнання такими двигунами легкових автомобілів. В Європі, наприклад, за 15 років (1975–1990 р.) виробництво легкових автомобілів з дизельними двигунами зросло в 10 разів.

Запалювання палива, впорсненого в камеру згоряння, відбувається не одразу, а після періоду затримки, протягом якого паливо, яке надійшло в камеру згоряння, встигає прогрітися, прореагувати з киснем повітря й утворити первинні продукти окиснення. Чим довший період затримки запалювання, тим більше часу на підготування горючої суміші, і тим активніше вона згоряє. Якщо період затримки запалювання занадто великий, то тиск у камері згоряння наростає дуже швидко, зростають ударні навантаження на поршень — спостерігається жорстка робота двигуна. Оптимальний період затримки запалювання залежить від конструкції камери згоряння і від здатності палива до самозапалювання, що виражається цетановим числом (ЦЧ) палива.

Див. також[ред.ред. код]

Література[ред.ред. код]

  • Пильов В. О., Шеховцов А. Ф. Двигуни внутрішнього згоряння: Серія підручників. Т. 4. Основи САПР ДВЗ.
  • Марченко А. П., Рязанцев М. К., Шеховцов А. Ф. Двигуни внутрішнього згоряння: Серія підручників у 6 томах. Т.1. Розробка конструкцій форсованих двигунів наземних транспортних машин.
  • В. І. Саранчук, М. О. Ільяшов, В. В. Ошовський, В. С. Білецький. Хімія і фізика горючих копалин. — Донецьк: Східний видавничий дім, 2008. — с. 600. ISBN 978-966-317-024-4

Посилання[ред.ред. код]

  • Animated Engines — пояснено різноманітні типи двигунів
  • Intro to Car Engines — малюнки та текст на тему двигуна внутрішнього згоряння
  • Walter E. Lay Auto Lab — дослідження в Мічиганському університеті