Відкриті математичні питання

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Нерозв'язані пробле́ми (або Відкриті проблеми) — гіпотези, що видаються вірними, але дотепер не доведені.

У науковому світі популярна практика складання відомими вченими або організаціями списків відкритих проблем, актуальних на сучасний момент. Зокрема, відомими списки математичних проблем є: Проблеми Гільберта, Проблеми Ландау, Проблеми тисячоліття. Згодом опубліковані проблеми з такого списку можуть бути розв'язані і, таким чином, втратити статус відкритих. Наприклад, більшість із проблем Гільберта, представлених ним у 1900 році, тепер так чи інакше розв'язані.

Теорія чисел[ред.ред. код]

Гіпотези про прості числа[ред.ред. код]

  • Сильна проблема Гольдбаха. Кожне парне число, більше 2, можна представити у виді суми двох простих чисел.
  • Слабка проблема Гольдбаха. Кожне непарне число, більше 5, можна представити у виді суми трьох простих чисел (доведена для всіх досить великих непарних чисел).
  • Відкритим є питання нескінченності кількості простих чисел у кожній з наступних послідовностей:
Послідовність Назва
2^n - 1 числа Мерсена
n^2 + 1 4-а проблема Ландау
n \cdot 2^n + 1 числа Калена
2^{2^n} + 1 числа Ферма
F_n числа Фібоначчі
пари (n, n+2) прості близнюки
пари (n, 2n+1) прості числа Софі Жермен

Гіпотези про досконалі числа[ред.ред. код]

  • Не існує непарних досконалих чисел.
  • Існує нескінченна кількість досконалих чисел.

Гіпотези про дружні числа[ред.ред. код]

  • Не існує взаємно простих дружніх чисел.
  • Будь-яка пара дружніх чисел має однакову парність.

Інші гіпотези[ред.ред. код]

Геометрія[ред.ред. код]

(Час виконання алгоритму перевірки — занадто великий)

Алгебра[ред.ред. код]

  • Зворотна теорема теорії Галуа. Для будь-якої скінченної групи H існують поля F і G, такі, що G є розширенням F і Gal(G/F) ізоморфна H.
  • Будь-яка скінченнопредставлена група, кожен елемент якої має скінченний порядок, — скінченна.

Для скінченнопородженої групи (більш слабка умова) це неправильно.[1]

Аналіз[ред.ред. код]

Комбінаторика[ред.ред. код]

Аксіоматична теорія множин[ред.ред. код]

У даний час найбільш розповсюдженою аксіоматичною теорією множин є ZFC — теорія Цермело — Френкеля з аксіомою вибору. Питання про несуперечність цієї теорії (а тим більше — про існування моделі для неї) залишається нерозв'язаним.

Обчислювальна математика[ред.ред. код]

Відомі проблеми, недавно розв'язані[ред.ред. код]

Див. також[ред.ред. код]

Примітки[ред.ред. код]

  1. http://arxiv.org/abs/math.GR/0607384 Rostislav Grigorchuk and Igor Pak Groups of Intermediate Growth: an Introduction for Beginners arXiv

Посилання[ред.ред. код]