Множина простих ідеалів, асоційованих з модулем позначається .
Мінімальні елементи в (щодо включення множин) у комутативному кільці R, називаються ізольованими простими ідеалами. Усі інші асоційовані прості ідеали називаються вкладеними простими ідеалами.
Модуль називається копримарним якщо з того що xm = 0 для деякого ненульового випливає що xnM = 0 для деякого натурального числаn. Ненульовий скінченнопороджений модульM над комутативним нетеровим кільцем є копримарним тоді і тільки тоді коли для нього існує один асоційований простий ідеал. Підмодуль N у M називається -примарним якщо є копримарним із асоційованим простим ідеалом . Ідеал I є -примарним ідеалом тоді і тільки тоді коли.
Навіть для комутативних локальних кілець, множина асоційованих простих ідеалів скінченнопородженого модуля може бути пустою. Проте в будь-якому кільці, що задовольняє умову обриву зростаючого ланцюга ідеалів (зокрема правому чи лівому нетеровому кільці) довільний ненульовий модуль має хоча б один асоційований простий ідеал.
Розглянемо множину ідеалів , для яких для деякого для модуля над . Тоді максимальні елементи цієї множини є простими ідеалами. Оскільки для ненульового модуля ця множина не є пустою (довільний елемент має свій анулятор, що може бути і нульовим ідеалом) то звідти для кожного такого модуля існує асоційований простий ідеал.
Припустимо, що такий ідеал є максимальним у цій множині але не простим. Тоді існують елементи , для яких але . Оскільки . Але . Тому, і . Тобто є строго більшим від , що суперечить максимальності останнього у заданій множині.
Довільний мінімальний простий ідеал для ідеала J є елементом множини . Множина цих ідеалів є множиною ізольованих простих ідеалів.
Множина рівна множині елементів (такі елементи називають дільниками нуля ).
З означення очевидно, що кожен елемент довільного асоційованого простого ідеала, а тому і їх об'єднання є дільником нуля . Навпаки, якщо елементи для яких то . Але є підмножиною деякого максимального анулятора елемента модуля і цей ідеал є простим. Тобто належить деякому асоційованому простому ідеалу.
Нехай S мультиплікативна система кільця і . Ідеал є асоційованим для модуля M над R, тоді і тільки тоді коли простий ідеал у локалізації кільця є асоційованим для модуля .
Якщо то для деякого . Тоді .
Навпаки якщо для деякого . Нехай . Тоді , звідки випливає, що і оскільки кільце є нетеровим, а тому всі ідеали скінченнопородженими, то існує також такий що . Тоді .
Якщо є скінченнопородженим модулем над , тоді існує скінченна послідовність підмодулів
для якої усі фактормодулі є ізоморфними факторкільцям для деяких простих ідеалів . До того ж для цих ідеалів справедливими є включення:
де за означенням носій модуля. Окрім того мінімальні елементи в усіх трьох множинах є однаковими.
Оскільки для ненульового модуля існує асоційований простий ідеал то у цьому випадку існує підмодуль ізоморфний . Далі якщо модуль не є нульовим то для нього можна використати ті самі аргументи і отримати модуль , такий що є ізоморфним для якогось простого ідеала (що буде простим асоційованим для модуля ). Продовжуючи по індукції отримуємо зростаючу послідовність модулів, що задовольняють умови теореми. Оскільки модуль є нетеровим то це процес завершиться за скінченну кількість кроків. Це можливо лише коли останній підмодуль у послідовності рівний .
Нехай тепер . Тоді тоді і тільки тоді коли для якогось локалізація , тобто якщо містить один із ідеалів . Звідси усі і мінімальні елементи обох множин є однаковими.
Нехай тепер . Тоді модуль містить підмодуль ізоморфний до . Нехай i — найменший індекс для якого . Якщо то модуль є ізоморфним до і ін'єктивно відображається у . Тому звідки .
Якщо є мінімальним елементом , то відповідної локалізації містить єдиний елемент . Оскільки є непустою і міститься в то і з властивостей для асоційованих простих ідеалів для локалізації .
Модуль над має скінченну довжину тоді і тільки тоді, коли є скінченнопородженим і елементами є лише максимальні ідеали.[2]
Якщо є кільцем цілих чисел і M — скінченною абелевою групою, тоді асоційованими простими ідеалами є ідеали породжені простими числами, що ділять порядок групи .
Приклад не нетерового комутативного кільця і модуля, що не має асоційованих простих ідеалів. Нехай — кільце многочленів над полем комплексних чисел від нескінченної кількості змінних і ідеал . Тоді . Справді, припустимо простий ідеал є анулятором деякого елемента . Виберемо довільного представника цього елемента ; тоді є множиною тих для яких . Проте є многочленом лише від скінченної підмножини змінних , нехай . Очевидно що (тобто ), але (тому ). Звідси не є простим ідеалом.