Цілі числа
Символ Zahlen часто застосовують для позначення множини всіх цілих чисел (див. Таблиця математичних символів) |

колами Ейлера
Ці́лі чи́сла — в математиці елементи множини , яка утворюється замиканням натуральних чисел відносно віднімання. Таким чином, цілі числа замкнуті відносно додавання, віднімання та множення.
Необхідність розгляду цілих чисел викликана неможливістю в загальному випадку відняти від одного натурального числа інше — можна віднімати тільки менше число від більшого. Введення нуля і від’ємних чисел робить віднімання такою ж повноцінною операцією, як додавання[1].
Множина цілих чисел складається з
- множини натуральних чисел ,
- нуля — розв'язку рівняння ,
- множини від'ємних чисел — множини розв'язків усіх рівнянь виду .
Для позначення множини цілих чисел використовується символ ℤ, який може в різних авторів використовуватися для позначення групи множин: ℤ+, ℤ+ або ℤ> для позначення додатних цілих чисел, ℤ≥ для не від'ємних цілих чисел, ℤ≠ для всіх цілих чисел крім нуля. Деякі автори використовують позначення ℤ* для всіх цілих чисел крім нуля, інші для позначення не від'ємних цілих чисел, або для {–1, 1}.
Дійсне число є цілим, якщо його десяткове подання не містить дробової частини (але може містити знак). Приклади дійсних чисел:
- Числа 142857; 0; –273 є цілими.
- Числа 5½; 9,75 не є цілими.
Історія[ред. | ред. код]
Розвиток математики почався з навичок практичної лічби (один, два, три, чотири…), тому натуральні числа виникли ще в доісторичний період як ідеалізація скінченної множини однорідних, стійких і неподільних об'єктів (людей, овець, днів тощо). Додавання з'явилося як математична модель таких важливих подій, як об'єднання кількох множин (стад, мішків тощо) в одне, а віднімання відображало, навпаки, відокремлення частини множини. Множення для натуральних чисел з'явилося в якості, так би мовити, пакетного додавання: 3 × 4 означало суму «3 рази по 4», тобто 4 + 4 + 4. Властивості і взаємозв'язок операцій відкривалися поступово[2][3].
Початковим кроком на шляху розширення натуральних чисел стала поява нуля; першими цей символ стали застосовувати, напевно, індійські математики[en]. Спочатку нуль застосовувався не як число, а як цифра при позиційному запису чисел, потім поступово став визнаватися і як повноцінне число, що означає відсутність чого-небудь (наприклад, повне розорення торговця)[4].
Від'ємні числа вперше стали використовувати в Стародавньому Китаї та Індії, де їх розглядали як математичний образ «боргу». Стародавній Єгипет, Вавилон та Стародавня Греція не використовували від'ємних чисел, а якщо виходили від'ємні корені рівнянь (при відніманні), вони відкидалися як неможливі. Виняток становив Діофант Александрійський, який у III столітті вже знав «правило знаків» і вмів множити від'ємні числа. Однак він розглядав їх лише як проміжний етап, корисний для обчислення остаточного додатного результату. Корисність і законність від'ємних чисел утверджувалися поступово. Індійський математик Брамагупта (VII століття) вже розглядав їх нарівні з додатними[5].
В Європі визнання настало на тисячу років пізніше, та й то довгий час від'ємні числа називали «помилковими», «уявними» або «абсурдними». Перший опис їх у європейській літературі з'явився у «Книзі абака» Леонарда Пізанського (1202), який також трактував від'ємні числа як борг. Рафаель Бомбеллі і Альбер Жирар у своїх працях вважали від'ємні числа цілком допустимими і корисними, зокрема, для позначення нестачі чого-небудь. Вільно використовували від'ємні числа Нікола Шюке[en] (1484 рік) і Міхаель Штифель (1544)[5].
У XVII столітті, з появою аналітичної геометрії, від'ємні числа отримали наочне геометричне подання на числовій осі. З цього моменту настає повна рівноправність. Легалізація від'ємних чисел призвела до численних зручностей, наприклад, перенесення доданків рівняння в іншу його частину стало можливим незалежно від знаку цього доданка (раніше, наприклад, рівняння і вважалися принципово різними)[6].
Проте теорія від'ємних чисел довго перебувала в стадії становлення. Блез Паскаль, наприклад, вважав, що , оскільки «ніщо не може бути менше, ніж ніщо»[7]. Жваво обговорювалася дивна пропорція — у неї перший член зліва більше другого, а праворуч — навпаки, і виходить, що більше дорівнює меншому («парадокс Арно»). Джон Валліс вважав, що від'ємні числа менші від нуля, але разом з тим більші, ніж нескінченність[8]. Невідомо також, який сенс має множення від'ємних чисел, і чому добуток від'ємних — додатний; на цю тему проходили запеклі дискусії. Відгомоном тих часів є та обставина, що в сучасній арифметиці операція віднімання і знак від'ємних чисел позначаються одним символом (мінус), хоча алгебраїчно це абсолютно різні поняття. Карл Фрідріх Гаусс у 1831 році вважав за потрібне роз'яснити, що від'ємні числа принципово мають ті ж права, що й додатні, а те, що вони застосовуються не до всіх речей, нічого не означає, тому що дроби теж застосовуються не до всіх речей (наприклад, незастосовні при підрахунку людей)[9].
Повна і цілком строга теорія від'ємних чисел була створена лише в XIX столітті (Вільям Гамільтон і Герман Гюнтер Грассман)[10].
Теоретико-множинні властивості[ред. | ред. код]
Додатні та від'ємні числа[ред. | ред. код]
Відповідно до своєї побудови, множина цілих чисел складається з трьох частин:
- Натуральні числа (або, що те ж саме, цілі додатні). Вони виникають природним чином при лічбі (1, 2, 3, 4, 5…)[11].
- Нуль — число, що позначається . Його визначальна властивість: для будь-якого числа .
- Цілі від'ємні числа.

Від'ємні числа при запису позначаються спереду знаком мінус: Для кожного цілого числа існує і єдине протилежне йому число, що позначається і яке володіє тією властивістю, що Якщо додатне, то протилежне йому число — від'ємне, і навпаки. Нуль протилежний самому собі.
Абсолютною величиною цілого числа називається це число з відкинутим знаком[12]. Позначення:
- Приклади:
Алгебричні властивості[ред. | ред. код]

- не є замкнутою відносно ділення двох цілих чисел (наприклад, 1/2).
- є абелевою групою.
- є комутативним моноїдом.
- — єдина нескінченна циклічна група.
- є комутативним кільцем (це слідує з двох перелічених вище властивостей).
- не є полем. Найменше поле, що включає цілі числа є множина раціональних чисел
У множині цілих чисел визначено три основні арифметичні операції: додавання, обернене до додавання віднімання та множення. Є також важлива операція, специфічна для натуральних і цілих чисел: ділення з остачею. Нарешті, для цілих чисел визначено порядок, що дозволяє порівнювати числа одне з одним.
Додавання і віднімання[ред. | ред. код]
Наведена таблиця ілюструє основні властивості додавання[13] для будь-яких цілих :
Властивість | Алгебраїчна запис |
---|---|
Комутативність | |
Асоціативність | |
Властивість нуля | |
Властивість протилежного елемента |
При додаванні і відніманні цілих чисел виконуються такі правила знаків[14], які слід враховувати при розкритті дужок:
Правила додавання цілих чисел[15].
- При додаванні цілих чисел з однаковими знаками треба додати їхні абсолютні величини і приписати результату знак доданків. Приклад; .
- При додаванні цілих чисел з різними знаками, треба порівняти їхні абсолютні величини, від більшої відняти меншу і приписати результату знак того доданка, у якого абсолютна величина більша. Приклади: .
- Віднімання для цілих чисел завжди можна виконати, і результат можна знайти як Приклад: .
- Геометрично додавання можна наочно уявити як зсув числа вздовж числової осі (див. малюнок на початку статті), причому додавання додатного числа викликає зсув праворуч, а від'ємного — ліворуч. Наприклад, для числа додавання до нього означає зсув вправо на 4 одиниці; наочно видно, що виходить . Аналогічно , зміщуючи вліво на 4 одиниці, отримаємо в результаті .
- Віднімання можна наочно уявити аналогічно, але в цьому випадку, навпаки, віднімання додатного числа викликає зсув вліво, а від'ємного — вправо. Наприклад, зміщує на 7 одиниць — до числа , а зміщує його вправо — до числа .
Множення і піднесення до степеня[ред. | ред. код]
Множення чисел далі позначається або (тільки у разі буквених позначень) просто . У таблиці описано основні властивості множення для будь-яких цілих :
Властивість | Алгебраїчна запис |
---|---|
Комутативність | |
Асоціативність | |
Властивість одиниці | |
Властивість нуля | |
Дистрибутивність множення відносно додавання |
При множенні цілих чисел виконуються правила знаків[14], які слід враховувати, розкриваючи дужки:
Наслідок: добуток чисел з однаковими знаками додатний, з різними — від'ємний.
Піднесення до натурального степеня цілих чисел визначається так само, як і для натуральних чисел:
Властивості піднесення до степеня цілих чисел також такі самі, як у натуральних:
На доповнення до цього визначення, прийнято угоду про нульовий степінь: для будь-якого цілого Підставою для такої угоди служить бажання зберегти наведені вище властивості і для нульового показника степеня: звідки ясно, що
Упорядкованість[ред. | ред. код]
— лінійно впорядкована множина. Порядок у ній задається співвідношеннями:
Ціле число додатне, якщо воно більше від нуля, від'ємне, якщо менше від нуля. Додатними цілими числами є натуральні числа і тільки вони. Від'ємні числа — це числа, протилежні додатним. Нуль не є ані додатним, ані від'ємним. Будь-яке від'ємне число менше від будь-якого додатного.
Для будь-яких цілих чисел справедливі такі співвідношення[16].
- Якщо , то для будь-якого буде .
- Якщо і , то .
- Якщо і , то .
- Якщо і , то .
Для порівняння двох від'ємних чисел існує правило: більше те число, в якого абсолютна величина менша. Наприклад, .
Подільність[ред. | ред. код]
Ділення з остачею[ред. | ред. код]
Операція ділення, взагалі кажучи, не визначена на множині цілих чисел. Наприклад, не можна поділити на — немає такого цілого числа, яке, помножене на , дасть . Але можна визначити так зване ділення з остачею[17]:
- Для будь-яких цілих (де ) існує єдиний набір цілих чисел такий, що , де
Тут a — ділене, b — дільник, q — (неповна) частка, r — остача від ділення (завжди невід'ємна). Якщо остача дорівнює нулю, кажуть, що ділення виконується націло[17].
- Приклади
- При діленні з остачею додатного числа на отримуємо неповну частку і остачу . Перевірка:
- При діленні з остачею від'ємного числа на отримуємо неповну частку і остачу . Перевірка:
- При діленні з остачею числа на отримуємо частку і остачу , тобто ділення виконується націло. Для швидкого з'ясування, чи ділиться задане число на (невелика) число існують ознаки подільності.
На операції ділення з остачею ґрунтуються теорія порівнянь і алгоритм Евкліда.
Ділення націло. Дільники[ред. | ред. код]
Як визначено вище, число ділиться (націло) на число якщо існує ціле число таке, що . Символічний запис: . Існують кілька рівносильних словесних формулювань зазначеної подільності[18]:
- ділиться (націло) на .
- є дільником (або: ділить ).
- кратне .
Кожне ціле число , не рівне нулю або має 4 тривіальні дільники: . Якщо інших дільників немає, число називається простим[19].
Поняття найбільшого спільного дільника двох цілих чисел, розкладання цілого числа на прості множники і основна теорема арифметики цілих чисел практично збігаються (з можливим урахуванням знака) з аналогами цих понять для натуральних чисел[20].
Цілі і дійсні числа[ред. | ред. код]
Існують практичні задачі, в яких необхідно округлити дійсне значення до цілого, тобто замінити його на найближче (у той або інший бік) ціле. Оскільки виконувати округлення можна різними способами, для уточнення можна використовувати символи Айверсона"[21]:
- — найближчим до ціле в бік зменшення (функція «підлога», англ. floor, або «ціла частина»). Традиційно використовуються також позначення Гауса або позначення Лежандра .
- — найближче до ціле в бік збільшення (функція «стеля», англ. ceiling).
Залежно від особливостей постановки задачі, можуть зустрітися й інші методи: округлити до найближчого цілого або відсікти дробову частину (останній варіант для від'ємних відрізняється від функції «ціла частина»).
Інший клас задач, що зв'язують цілі і дійсні числа — наближення дійсного числа відношенням цілих, тобто раціональним числом. Доведено, що будь-яке дійсне число можна з будь-якою бажаною точністю наблизити раціональним, найкращим інструментом для такого наближення служать безперервні (ланцюгові) дроби[22].
Застосування[ред. | ред. код]
У прикладних науках[ред. | ред. код]

Цілі числа широко застосовуються при дослідженні об'єктів, які за своєю природою або за особливостями постановки задачі неподільні (наприклад, люди, кораблі, будівлі, іноді дні і т. ін.). Від'ємні числа також можуть знайти застосування в таких моделях — скажімо, при плануванні торговельних угод можна продажі позначати додатними числами, а купівлі — від'ємними. Приклад з фізики — квантові числа, що грають фундаментальну роль у мікросвіті; всі вони — цілі (або напівцілі) числа зі знаком[23].
Для розв'язання задач, що виникають при цьому, розроблені спеціальні математичні методи, що враховують специфіку проблем. Зокрема, розв'язування в цілих числах алгебраїчних рівнянь (різних степенів) розглядає теорія «діофантових рівнянь»[24]. Питання цілочисельної оптимізації досліджує цілочисельне програмування[25].
В інформатиці[ред. | ред. код]
Тип ціле число — найчастіше один з основних типів даних у мовах програмування. Цілі типи даних зазвичай реалізуються як фіксований набір бітів, один з яких кодує знак числа, а інші — двійкові цифри. Сучасні комп'ютери мають багатий набір команд для арифметичних операцій з цілими числами[26].
Місце в загальній алгебрі[ред. | ред. код]

— натуральні числа
— цілі числа
— раціональні числа
— дійсні числа
— ірраціональні числа
З точки зору загальної алгебри, щодо додавання і множення є нескінченним коммутативним кільцем з одиницею, без дільників нуля (область цілісності). Кільце цілих чисел є евклідовим (і, отже, факторіальним) і кільцем Нетер, але не є артіновим. Якщо розширити це кільце, додавши до нього всілякі дроби (див. поле часток), вийде поле раціональних чисел (); у ньому вже виконується будь-яке ділення, крім ділення на нуль[27][28].
Відносно операції додавання є абелевою групою, і, отже, також циклічною групою, оскільки кожен ненульовий елемент може бути записаний у вигляді скінченної суми 1 + 1 + … + 1 або (−1) + (−1) + … + (−1). Фактично, є єдиною нескінченною циклічною групою відносно додавання через те, що будь-яка нескінченна циклічна група ізоморфна групі . Відносно множення не утворює групу, оскільки у множині цілих чисел ділення, взагалі кажучи, неможливе[27].
Множина цілих чисел зі звичайним порядком є впорядкованим кільцем, але не є цілком впорядкованою, оскільки, наприклад, серед від'ємних чисел немає найменшого. Проте її можна зробити цілком упорядкованою, якщо визначити нестандартне відношення «менше або дорівнює»[29], яке позначимо і визначимо таким чином:
- якщо або або або і
Тоді порядок цілих чисел буде таким: Зокрема, буде найменшим від'ємним числом. з новим порядком буде цілком упорядкованою множиною, але вже не буде впорядкованим кільцем, оскільки цей порядок не узгоджений з операціями кільця: наприклад, з , додавши зліва і справа 1, отримуємо неправильну нерівність
Будь-яке впорядковане кільце з одиницею і без дільників нуля містить одне і тільки одне підкільце, ізоморфне [30].
Логічні основи[ред. | ред. код]
Розширення натуральних чисел до цілих, як і будь-яке інше розширення алгебричної структури, ставить багато питань, основні з яких — як визначити операції над новим типом чисел (наприклад, як визначити множення від'ємних чисел), які властивості вони тоді будуть мати і (головне питання) чи припустиме таке розширення, чи не призведе воно до нездоланних суперечностей. Для аналізу подібних питань треба сформувати набір аксіом для цілих чисел.
Аксіоматика цілих чисел[ред. | ред. код]
Найпростіше визначити аксіоматику множини цілих чисел якщо спиратися на вже побудовану множину натуральних чисел (яка вважається несуперечливою, а властивості її — відомими). А саме, визначимо як мінімальне кільце, що містить множину натуральних чисел. Більш строго, аксіоми цілих чисел такі[31][32].
- Z1: Для будь-яких цілих чисел визначена їх сума .
- Z2: Додавання комутативне: . Для скорочення, фразу «для будь-яких » далі, як правило, опускаємо.
- Z3: Додавання асоціативне:
- Z4: Існує елемент 0 (нуль) такий, що .
- Z5: Для будь-якого цілого числа існує протилежний йому елемент такий, що
- Z6: Для будь-яких цілих чисел визначено їх добуток .
- Z7: Множення асоціативне:
- Z8: Множення пов'язане з додаванням розподільними (дистрибутивними) законами:
- Z9: Множина цілих чисел містить підмножину, ізоморфну множині натуральних чисел . Для спрощення далі цю підмножину позначено тією ж буквою .
- Z10 (аксіома мінімальності): нехай — підмножина , що включає і така, що операція віднімання не виводить за межі . Тоді збігається зі всією .
З цих аксіом випливають як наслідки всі інші властивості цілих чисел, зокрема комутативність множення, упорядкованість, правила ділення націло і ділення з остачею[33]. Покажемо, наприклад, як уводиться порядок цілих чисел. Будемо говорити, що , якщо є натуральне число. Аксіоми порядку легко перевіряються. З визначення відразу випливає, що всі натуральні числа більші від нуля (додатні), а всі протилежні їм — менші від нуля (від'ємні). Для натуральних чисел новий порядок збігається зі старим[34].
Наведена аксіоматика цілих чисел категорична, тобто будь-які її моделі ізоморфні як кільця[35].
Несуперечливість[ред. | ред. код]
Стандартний спосіб довести несуперечність нової структури — змоделювати (інтерпретувати) її аксіоми за допомогою об'єктів іншої структури, чия несуперечність сумнівів не викликає. У нашому випадку ми повинні реалізувати ці аксіоми на базі пар натуральних чисел[36].
Розглянемо всі можливі впорядковані пари натуральних чисел . Щоб сенс подальших визначень став зрозумілим, відразу пояснимо, що ми маємо намір надалі кожну таку пару розглядати як ціле число наприклад, пари або будуть зображати одиницю, а пари або зображатимуть
Далі визначимо[37]:
- Пари і вважаються рівними, якщо . Це пов'язано з тим, що, як показано в прикладах, будь-яке ціле число можна подати нескінченним числом пар.
- Додавання: сума пар і визначається як пара .
- Множення: добуток пар і визначається як пара .
Неважко перевірити, що результати додавання і множення не змінюються, якщо будь-яку пару ми замінимо на рівну їй, тобто нова пара-результат буде рівною попередній (у зазначеному визначенням 1 сенсі рівності). Неважко також переконатися, що описана структура пар задовольняє всьому наведеному переліку аксіом цілих чисел. Додатні числа моделюються парами , яких , нуль зображують пари виду , а пари з відповідають від'ємним числам.
Ця модель дозволяє прояснити, як з аксіом цілих чисел однозначно випливають їх властивості; покажемо це для «правила знаків». Наприклад, помноживши два «від'ємні числа» і , у яких ми за визначенням отримаємо пару . Різниця дорівнює , це число додатне, тому пара-добуток зображує додатне ціле число, отже, добуток від'ємних чисел додатний. Будь-яке інше правило (скажімо, «добуток від'ємних чисел від'ємний») зробило б теорію цілих чисел суперечливою.
Описана модель доводить, що наведена аксіоматика цілих чисел несуперечлива. Тому що якби у ній була суперечність, то це означало б суперечність і в базовій для даної моделі арифметиці натуральних чисел, яку ми заздалегідь припустили несуперечливою.
Потужність множини[ред. | ред. код]
Множина цілих чисел нескінченна. Хоча натуральні числа становлять лише частину множини цілих чисел, цілих чисел стільки ж, скільки натуральних, в тому сенсі, що потужність множини цілих чисел така ж, як і множини натуральних — обидві вони зліченні[38].
Варіації та узагальнення[ред. | ред. код]
Деякі алгебраїчні структури за своїми властивостями схожі на кільце цілих чисел . Серед них:
- Гауссові цілі числа. Це комплексні числа , де — цілі числа. Для гаусових чисел, як і для звичайних цілих, можна визначити поняття дільників, простого числа і порівняння за модулем. Справедливий аналог основної теореми арифметики[39].
- Цілі числа Ейзенштейна[40].
Примітки[ред. | ред. код]
- ↑ Элементарная математика с точки зрения высшей, 1987, с. 37.
- ↑ Мах Э. Познание и заблуждение // Альберт Эйнштейн и теория гравитации. — М. : Мир, 1979. — С. 74 (подстрочное примечание). — 592 с.: «перш ніж виникне поняття про число, має існувати досвід, що в зрозумілому сенсі рівноцінні об'єкти існують множинно і незмінно».
- ↑ Клайн М.[ru]. Математика. Утрата определённости. — М. : Мир, 1984. — С. 109—112. — 446 с.
- ↑ Ламберто Гарсия дель Сид. Особые числа других культур // Замечательные числа. Ноль, 666 и другие бестии. — DeAgostini, 2014. — Т. 21. — С. 115. — 159 с. — (Мир математики). — ISBN 978-5-9774-0716-8.
- ↑ а б Глейзер Г. І. История математики в школе. — М. : Просвещение, 1964. — С. 132—135. — 376 с.
- ↑ Справочник по элементарной математике, 1978, с. 113—114.
- ↑ Сухотин А. К. Мінливості наукових ідей. М.: Мовляв. гвардія. 1991, стор 34.
- ↑ Панов В. Ф. Отрицательные числа // Математика древняя и юная. — Изд. 2-е, исправленное. — М. : МГТУ им. Баумана, 2006. — С. 399. — 648 с. — ISBN 5-7038-2890-2.
- ↑ Александрова Н. Ст. Математичні терміни.(довідник). М.: Вища школа, 1978, стор 164.
- ↑ Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М. : Наука, 1972. — Т. III. — С. 48—49.
- ↑ Элементарная математика, 1976, с. 18.
- ↑ Справочник по элементарной математике, 1978, с. 114.
- ↑ Элементарная математика, 1976, с. 24—28.
- ↑ а б Элементарная математика с точки зрения высшей, 1987, с. 39.
- ↑ Справочник по элементарной математике, 1978, с. 114—115.
- ↑ Справочник по элементарной математике, 1978, с. 172—173.
- ↑ а б Деление // Математическая энциклопедия (в 5 томах). — М. : Советская энциклопедия, 1979. — Т. 2.
- ↑ Сушкевич А. К. Теория чисел. Элементарный курс. — Х. : Изд-во Харьковского университета, 1954. — С. 5.
- ↑ Элементарная математика, 1976, с. 20.
- ↑ Понятие делимости // Элементы теории делимости: Методические рекомендации для студентов факультета педагогики и психологии детства / сост. С. В. Поморцева, О. В. Иванова. — Омск : Омский гос. пед. университет, 2008. — 37 с.
- ↑ Кнут Д. Искусство программирования для ЭВМ. Т. 1. Основные алгоритмы. — М. : Мир, 1976. — С. 68. — 735 с.
- ↑ Хинчин А. Я. Цепные дроби. — М. : ГИФМЛ, 1960.
- ↑ Сивухин Д. В. § 38. Четыре квантовых числа электрона и тонкая структура спектральных термов // Общий курс физики. — М., 2005. — Т. 5 Атомная и ядерная физика. — С. 226..
- ↑ Гельфонд А. О. Решение уравнений в целых числах. — М. : Наука, 1978. — (Популярные лекции по математике).
- ↑ Карманов В. Г. Математическое программирование. — М. : Наука, 1986. — 288 с.
- ↑ М. Бен-Ари. Глава 4. Элементарные типы данных // Языки программирования. Практический сравнительный анализ = Understanding Programming Language. — М. : Мир, 2000. — С. 53—74. — 366 с. — ISBN 5-03-003314-9.
- ↑ а б Винберг Э. Б. Курс алгебры. 2-е изд. — М. : Изд-во МЦНМО, 2013. — С. 15—16, 113—114. — 590 с. — ISBN 978-5-4439-0209-8.
- ↑ Атья М., Макдональд И. Введение в коммутативную алгебру. — М. : Мир, 1972. — С. 94. — 160 с.
- ↑ Дональд Кнут. Искусство программирования, том I. Основные алгоритмы. — М. : Мир, 1976. — С. 571 (15b). — 736 с.
- ↑ Числовые системы, 1975, с. 100.
- ↑ Числовые системы, 1975, с. 95—96.
- ↑ Энциклопедия элементарной математики, 1951, с. 160—162.
- ↑ Числовые системы, 1975, с. 96—98.
- ↑ Энциклопедия элементарной математики, 1951, с. 170—171.
- ↑ Числовые системы, 1975, с. 98.
- ↑ Числовые системы, 1975, с. 100—102.
- ↑ Энциклопедия элементарной математики, 1951, с. 162—168.
- ↑ Н. Я. Виленкин. Рассказы о множествах. — 3-е изд.. — М. : МЦНМО, 2005. — С. 65—66. — 150 с. — ISBN 5-94057-036-4.
- ↑ Окунев Л. Я. Целые комплексные числа. — М. : Гос. уч.-пед. изд-во Наркомпроса РСФСР, 1941. — 56 с.
- ↑ Eric W. Weisstein. Eisenstein Integer. Архів оригіналу за 15 грудня 2020. Процитовано 19 серпня 2017.
Див. також[ред. | ред. код]
![]() |
Вікіпідручник має книгу на тему |
|