Чавун

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Чаву́н — сплав заліза з вуглецем (понад 2% вуглецю за масою) та іншими елементами, який характеризується наявністю евтектичного перетворення: нестабільного (цементитного) або стабільного (графітного)[1].

Слово «чавун» походить з тюркських мов,[2] до яких воно, імовірно, потрапило з китайської мови.[3]

Чисте залізо має обмежене застосування. В техніці зазвичай використовують сплави заліза з вуглецем, які поділяють на сталі і чавуни. Сталі містять до 2% вуглецю, а чавуни — від 2,14 до 4% вуглецю і навіть більше.

Кришка каналізаційного люку, виготовлена з чавуну

Історія[ред.ред. код]

Виплавка чавуну у Китаї у печі з дутьовим ящиком, що приводиться в дію за допомоги водяного колеса. Малюнок з книжки «Нун шу» Ван Чженя, 1313 рік.

Найдавніші артефакти, виготовлені з чавуну, були знайдені на території східної частини сучасного Китаю під час археологічних розкопок і відносяться до 5 ст. до н. е.[4] Перша письмова згадка про чавун трапляється у китайському літописі «Цзо чжуань» (складений близько 389 до Р.Х.) у записі, що стосується 513 р. до Р. Х. [Джерело?] У Китаї одержували чавун з високофосфористих залізних руд, тому він містив до 7% фосфору і мав низьку температуру плавління. З нього виливали різноманітні вироби[5]. Чавун виплавляли у невеличкій печі заввишки до 1 м, яка була з'єднана зі спеціальним дуттьовим ящиком, за допомоги якого інтенсивно подавалося повітря (дуття) у піч, що забезпечувало високі температури в печі й створювало умови для навуглецювання заліза, утворення чавуну і його плавління (чавун має температуру плвління нижчу від температури плавління чистого заліза). Дутьові ящики приводилися в дію або вручну або за допомоги водяного колеса.

Чавун був відомий й античним європейським металургам 5 — 6 століть до н. е. та пізнішого часу. Він утворювався у сиродутних горнах разом з основним продуктом — крицею при відхиленнях від сиродутного процесу. Арістотель відзначав, що при великому нагріванні у горну може утворитись залізо рідке, яке після застигання відрізняється від звичайного заліза. [Джерело?] Пліній Старший у «Природничій історії» писав: «Залізо при плавлінні стає рідким, як вода, і після цього ламається подібно до губки.» Ламкість заліза в данному випадку говорить про те, що мова йде саме про чавун.

Нове знайомство європейських металургів з чавуном, причому в більших масштабах, відбулося вже за Середньовіччя, у 11 — 12 століттях, так само при відхиленнях від сиродутного процесу, який провадився на той час вже у великих сиродутних печах заввишки до 4 — 5 м — штюкофенах. Припускається, що знайомство з чавуном відбулося неочікувано для самих металургів. Рідкий чавун витікав з печі разом зі шлаком. Чавун не піддається куванню через свою ламкість і спочатку його вважали небажаним відходом виробництва, утворення якого зменьшувала вихід придатного продукту — криці. Перший європейський чавун виплавляли на теренах Священної Римської імперії наприкінці XIV ст., майже одночасно в австрійській Штирії та Північній Італії. [Джерело?] Лише згодом з чавуну навчилися робити відливки і почали використовувати його в ливарництві. Ще пізніше навчилися повторно переплавляти його з рудою у кричному горні й отримувати з нього ковке залізо. При цьому було помічено, що виплавка напівпродукту — чавуну — в одному агрегаті і подальша його переробка на ковке залізо у іншому агрегаті має велику економічну ефективність порівняно з прямим сиродутним процесом отримання заліза у сиродутних горнах. Витрата деревного вугілля скоротилася у два рази, вихід заліза збільшився у півтора рази, зросла продуктивність виробництва заліза. Після цього металурги почали будувати доменні печі, єдиним продуктом яких був лише рідкий чавун. Весь подальший розвиток металургії заліза відбувався як вдосконалення цього двоступеневого способу виробництва сталі[6].

З 1500 р. до 1700 р. світова виплавка чавуну зросла приблизно з 60 тис. т до 104 тис. т. (в 1,7 разів), а за все XVII ст. з 104 тис. т до 278 тис. т (1790), тобто у 2,67 разів. А за наступні 80 років з 1790 по 1870 виплавка чавуну склала 12 млн т, що в 43 рази більше ніж у 1790.

На частку Англії припадало в 60 роках XIX ст. понад 50% всього виплавленого чавуну. Але в другій половині XIX ст. Англію за темпами розвитку чорної металургії обігнали США та Німеччина.

Світове виробництво чавуну в 2009 склало 898 261 000 тонн, що на 3,2% нижче, ніж у 2008 (927 123 000 т)[7]. 2014 року в світі було виплавлено 1 179 523 тис. т доменного чавуну[8].

Світова десятка країн, що є найбільшими виробниками чавуну[8]
2008 2014
№ п/п Країна Виробництво, млн. т  % від світового виробництва № п/п Країна Виробництво, млн. т  % від світового виробництва
1 Китай 543,748 60,53 1 Китай 711,600 60,33
2 Японія 66,943 7,45 2 Японія 83,870 7,11
3 РФ 43,945 4,89 3 Індія 53,797 4,56
4 Індія 29,646 3,30 4 РФ 51,480 4,36
5 Південна Корея 27,278 3,04 5 Південна Корея 46,898 3,98
6 Україна 25,676 2,86 6 США 29,345 2,49
7 Бразилія 25,267 2,81 7 Німеччина 27,626 2,34
8 Німеччина 20,154 2,24 8 Бразилія 26,913 2,28
9 США 18,936 2,11 9 Україна 24,786 2,10
10 Франція 8,105 0,9 10 Франція 10,866 0,92
11 Інші 88,563 9,86 11 Інші 112,342 9,52
Загалом в світі 898,261 Загалом в світі 1179,523
Примітки. Виробництво чавуну у Євросоюзі 2014 року становило 95,088 млн. т.

Виробництво чавуну[ред.ред. код]

Докладніше: доменний процес
та доменне виробництво

Основним способом отримання чавуну є доменне виробництво. У відносно незначній кількості також одержують так званий синтетичний чавун у електричних печах зі сталевих відходів з додаванням карбюризаторів.

Чавун при доменному виробництві одержують із залізорудної сировини (виготовлених з залізної руди окатків або агломерату) в спеціальних вертикальних печах, які називаються доменними печами, або домнами. Доменні печі — це складні споруди з вогнетривкого матеріалу із зовнішньою сталевою обшивкою. Висота сучасних доменних печей сягає 30 м, а внутрішній діаметр — до 6 м.

Добова продуктивність доменної печі, в залежності від її корисного об'єму, може становити від 2000 т до 10000 т чавуну на добу. Доменна піч після її пуску працює безперервно 5—6 років, а то й і до 10 років. Потім її ремонтують і знову пускають у роботу. Операції з підготовки шихти, завантаженні її в домну, випуску чавуну і шлаку механізовані. Шихту завантажують через верхню частину домни (колошник).

Спочатку засипають шар коксу, потім шар суміші руди з коксом і флюсами, потім знову шар коксу і т. д. Кокс служить джерелом тепла для підтримання потрібної температури в домні і для одержання відновника — монооксиду вуглецю CO, а флюси (найчастіше CaCO3) — для перетворення пустої породи (SiO2, глини тощо) в легкоплавкі сполуки — шлак.

Горіння коксу підтримується вдуванням у нижню частину домни (горно) попередньо нагрітого до 800–1000°С повітря. Найвища температура (до 1500 °C і навіть більше) досягається в нижній частині домни у зоні горіння коксу, а найнижча (до 200 °C) — у найвищій частині.

Схема доменного процесу. Приблизний розподіл температур по висоті домни.

В результаті згоряння коксу в нижній частині домни утворюється діоксид вуглецю CO2, який, піднімаючись вгору і проходячи крізь шар розжареного коксу, перетворюється в монооксид вуглецю CO:

  • C + O2 = СО2
  • CO2 + C = 2CO

Монооксид вуглецю як сильний відновник, проходячи через шари шихти, відновлює оксиди заліза (залізну руду). Причому ступінь відновлення залежить від температури. При температурі 200–500°С Fe2O3 відновлюється до Fe3O4:

  • 3Fe2O3 + CO = 2Fe3O4 + CO2

при 600 °C Fe3O4 відновлюється до FeO:

  • Fe3O4 + CO = 3FeO + CO2

Вище 700 °C FeO відновлюється до вільного заліза, яке утворюється у твердому стані (так зване губчасте залізо):

  • FeO + CO = Fe + CO2

При вищих температурах у процесах відновлення оксидів заліза бере участь, крім монооксиду вуглецю, і вільний вуглець:

  • FeO + C = Fe + CO ↑

Відновлення заліза з руди закінчується при температурі 1000–1100 °C. При цій температурі частково відновлюються й інші елементи зі сполук, що входять до складу руди як домішки, — манган, силіцій, фосфор тощо. Наприклад:

  • SiO2 + 2C = Si + 2CO ↑
  • Ca3(PO4)2 + 5C = 2Р + 3CaO + 5СО ↑

Утворюване губчасте залізо частково реагує з розжареним вуглецем і утворює хімічну сполуку — карбід заліза Fe3C:

  • 3Fe + C = Fe3C

Ця сполука не підлягає правилам звичайної валентності. Карбід заліза Fe3C називають цементитом. Цементит в залізі утворює розчин, який називають чавуном.

Температура плавлення чавуну нижча, ніж чистого заліза, і залежить від вмісту вуглецю. Температура плавлення заліза 1538 °C, а чавун із вмістом вуглецю 4,3% плавиться при 1130 °C. Це найнижча температура плавлення чавуну. Доменний чавун містить звичайно 3—4% вуглецю і плавиться при 1200–1300°С.

У розплавленому чавуні легко розчиняються силіцій, манган, фосфор, сірка й інші домішки, які й залишаються в чавуні. Розплавлений чавун стікає в найнижчу частину домни (горно), звідки його періодично випускають. Пуста порода, що міститься в залізній руді, видаляється у вигляді шлаку. Шлак утворюється за такими хімічними рівняннями. Вапняк, що додається до шихти як флюс, при 800–1000°С розкладається на оксид кальцію і діоксид вуглецю. Утворюваний CaO як оксид з основними властивостями взаємодіє з силіцієвим ангідридом SiO2 й амфотерним оксидом алюмінію Al2O3 (що міститься в глині) з утворенням відносно легкоплавких силікату кальцію і алюмінату кальцію:

  • CaCO3 = CaO + CO2
  • CaO + SiO2 = CaSiO3
  • CaO + Al2O3 = Ca(AlO2)2

Шлак плавиться близько 1100 °C і стікає в горно. Оскільки шлак легший ніж чавун, він збирається над розплавленим чавуном і захищає його від окиснення. Розплавлений шлак, як і чавун, періодично випускають з домни. Доменний шлак використовують для виробництва будівельних матеріалів.

Доменний газ[ред.ред. код]

Доменний газ, крім азоту N2, діоксиду вуглецю CO2 та інших газів, містить близько 30 об'ємних процентів монооксиду вуглецю CO. Його спалюють у кауперах, в яких нагрівається повітря, що вдувається у домну. З метою підвищення продуктивності доменних печей і зниження собівартості одержуваного чавуну на багатьох металургійних заводах застосовують збагачене киснем повітря і дешевий природний газ. Заміна звичайного повітря збагаченим до 30 об'ємних процентів кисню повітрям, а також вдування у домну природного газу підвищує продуктивність домни на 10 і більше процентів і знижує витрати коксу до 20%. Природний газ, який складається головним чином з метану, згоряє у домні з утворенням діоксиду вуглецю CO2 і водяної пари H2O. Останні, реагуючи з розжареним коксом, перетворюються в монооксид вуглецю CO і водень:

CH_{4} + 2O_{2}=CO_{2} + 2H_{2}O \!
CO_{2} + C = 2CO \!
H_{2}O + C = CO + H_{2} \!

Внаслідок цього доменні гази збагачуються відновниками — монооксидом вуглецю і водню, а це прискорює процеси відновлення руди і зменшує витрати коксу.

Види чавунів[ред.ред. код]

Загальні положення[ред.ред. код]

Чавуни, які виплавляють у доменних печах поділяють на:

переробні, які використовуються для виробництва сталі у кисневих конверторах, електропечах, мартенівських печах;

ливарні, які використовуються для одержання виливків у ливарних цехах машинобудівних чи ливарних заводів. Частка цих чавунів зменшується й не перевищує 10%.

Широке застосування чавунів у машинобудуванні пояснюється порівняно невеликою вартістю й добрими технологічними властивостями чавунів — високою рідкотекучістю й незначною (~ 1%) усадкою під час кристалізації та наступного охолодження, здатністю легко оброблятися різанням, можливістю зміни властивостей термообробкою й легуванням. Найкращі ливарні властивості мають евтектичні чавуни, оскільки в них менший температурний інтервал кристалізації.

Залежно від хімічного складу та умов кристалізації карбон в чавунах може кристалізуватися як у вільному стані у вигляді графіту, так і у вигляді сполуки з ферумом — цементиту Fe3C. Залежно від стану карбону в чавунах, їх класифікують на білі та машинобудівні чавуни.

Білий чавун[ред.ред. код]

У білих чавунах весь вуглець перебуває в цементиті. Завдяки цементиту такі чавуни мають білий блискучий злам, від кольору якого і походить їх назва. Структуру білих чавунів у рівноважному стані творять дві фази — ферит та цементит. Завдяки твердому цементиту, кількість якого збільшується зі збільшенням вмісту карбону, білі чавуни мають високу твердість (450…550 НВ), дуже крихкі, практично не підлягають різанню лезовим інструментом. Тому в машинобудуванні білі чавуни мають обмежене застосування. Їх використовують тільки як зносотривкий матеріал для відливання деталей шламових насосів, гідроциклонів, доменних печей, кульових млинів для розмелювання руд. З виливків білого чавуну отримують ковкі чавуни.

Машинобудівні чавуни[ред.ред. код]

Машинобудівні чавуни відливають за таких умов, що забезпечують повну або часткову графітизацію — виділення графіту. Тому властивості цих чавунів визначаються не тільки структурою металевої основи (ферит, перліт), але й формою, розмірами, кількістю й характером розташування в основі графітних виділень. Виливки з цих чавунів добре обробляються різанням й не підлягають обробці тиском.

Чавуни з пластинчастим графітом[ред.ред. код]

Виливки з чавунів з пластинчастим графітом одержують безпосередньо заливанням розплавленого металу в ливарні форми. Графіт під час кристалізації формується у вигляді вигнутих пелюсток, пластинок. Такий графіт називають пластинчастим. Наявність у структурі вільного графіту зумовлює матовий сірий колір зламу, від якого походить інша назва цих чавунів — сірі чавуни.

Пластинчастий графіт порушує суцільність металевої основи, створює на краях пелюсток зони сильної концентрації напружень, і тому сірі чавуни характеризуються низькою міцністю на розтягування, згинання, скручування й дуже низькою пластичністю. Максимальна границя міцності на розтягування цих чавунів не перевищує 450 МПа. За ГОСТ 1412-85 марки чавунів з пластинчастим графітом позначаються літерами СЧ (С — сірий, Ч — чавун) і числами, які відповідають мінімально допустимим значенням границі міцності на розтягування σв у МПа·10-1 (наприклад СЧ 35).

Їх рекомендується використовувати для виробів, що підлягають переважно стисканню. Та завдяки пластинчастому графіту в сірих чавунах вдало поєднуються добрі антифрикційні властивості, зносотривкість, здатність гасити вібрації та мала чутливість до концентраторів напружень. З них відливають різні деталі для машин, махові колеса, шківи, плити, станини та столи верстатів, корпуси електродвигунів тощо.

Чавуни з кулястим графітом[ред.ред. код]

Чавуни з кулястим графітом, як порівняти з іншими чавунами, мають вищу пластичність, ударну в'язкість й одночасно міцність (за що їх називають високоміцними), що насамперед зумовлено кулястою формою графіту, яка забезпечується сфероїдизуванням. Сфероїдизування полягає у введенні в розплав малих додатків (0,03…0,06%) сфероїдизувальних металів — магнію, церію, кальцію, під дією яких графіт кристалізується у формі кульок, які мінімально послаблюють металеву основу чавуну.

За ДСТУ 3925-99 умовне позначення марки містить літери ВЧ (В — високоміцний, Ч — чавун), цифрове позначення мінімального допустимого значення границі міцності на розтягування σв у МПа та через дефіс — відносне видовження δ у відсотках. Максимальну міцність має чавун марки ВЧ 1000-2.

З них виготовляють розподільні й колінчасті вали, блок-картери, головки циліндрів, шатуни, поршні, поршневі кільця в автомобілебудуванні; супорти, шпинделі, зубчасті колеса у верстатобудуванні; плити гідравлічних пресів, напрямні та плунжери ливарних машин, напірних труб для води, нафти, агресивних рідинних та газових середовищ.

Чавуни з вермикулярним графітом[ред.ред. код]

Чавуни з вермикулярним графітом також одержують модифікуванням маґнієм, тільки в меншій кількості, що зумовлює утворення вермикулярного графіту у формі графітних пелюсток із заокругленими краями, менших розмірів та грубіших як порівняти з пластинчастим графітом. Марки цих чавунів позначають подібно як і високоміцних, наприклад ЧВГ 400-4.

За однакової структури металевої основи механічні властивості чавунів з вермикулярним графітом проміжні між властивостями сірих з пластинчастим та високоміцних з кулястим графітом. Вони переважають сірі чавуни за пластичністю, ударною в'язкістю, корозійною тривкістю, герметичністю, а високоміцні — за здатністю гасити вібрації, оброблятися різанням, меншою вартістю (дешевші на 20…30%).

Ковкі чавуни[ред.ред. код]

Ковкі чавуни одержують шляхом тривалого графітизувального відпалу виливків з білого маловуглецевого (2,4…2,9% С) чавуну. Відпал при високій температурі спричиняє розкладання метастабільного цементиту з утворенням графіту компактної форми з кошлатими краями, так званого графіту відпалу. За впливом на механічні властивості чавуну такий графіт займає проміжне положення між пластинчастим і кулястим графітом. Структура металевої основи ковких чавунів — від феритної до перлітної — залежить від хімічного складу та режиму термічної обробки виливків з білого чавуну.

За ГОСТ 1215-79 марки ковких чавунів позначають літерами КЧ (К — ковкий, Ч — чавун), після яких вказуються мінімально допустимі значення границі міцності на розтяг у МПа·10-1 й через дефіс — відносного видовження у відсотках (наприклад, КЧ 30-6).

Істотним недоліком виробів з ковких чавунів є висока вартість внаслідок тривалого високотемпературного відпалу та обмеження розмірів.

Економіка чавуну[ред.ред. код]

Експорт чавуну в Україні у 2005 склав 879,07 тис. тонн на 216,07 млн. доларів.

Див. також[ред.ред. код]

Примітки[ред.ред. код]

  1. ДСТУ 2891-94 Чавун для виливків. Терміни та визначення.
  2. Чавун. // Етимологічний словник української мови: У 7 т. / Редкол. О. С. Мельничук (голов. ред.) та ін. — К.: Наук. думка, 1983 — . — Т. 6: У — Я / Уклад.: Г. П. Півторак та ін. — 2012. — С. 274. ISBN 978-966-00-0816-8.
  3. Н. Баскаков. К проблеме китайских заимствовани в тюркских языках. // Turcica et Orientalia. Studies in honour of Gunnar Jarring on his eightieth birthday. — Istanbul, 1987. (рос.)
  4. Donald B. Wagner (1993).Iron and Steel in Ancient China. BRILL. pp. 60 — 81, 335–340. ISBN 978-90-04-09632-5 (англ.)
  5. Чугун / Большая советская энциклопедия. Главн. ред. А. М. Прохоров, 3-е изд. Тома 1-30. — М.: «Советская энциклопедия», 1969–1978. (рос.).
  6. Металлургия чугуна. Ефименко Г. и др. Изд. 2. — К.: Вища школа, 1974. С. 13.
  7. Світове виробництво чавуну за 2009 рік знизилося на 3,2%
  8. а б Monthly iron production на сайті Worldsteel Association. (англ.)

Джерела[ред.ред. код]

  • Ф. А. Деркач «Хімія» Л. 1968
  • Зворыкин А. А. История техники. 1962 р. —772 с.
  • В. Попович, А. Кондир, Е. Плешаков та ін. Технологія конструкційних матеріалів і матеріалознавство: Практикум: Навч. посібник. — Львів: Світ, 2009. — 552 с.
  • Мовчан В. П., Бережний М. М. Основи металургії. — Дніпропетровськ: Пороги, 2001. — 336 с.
  • Основи металургійного виробництва металів і сплавів / Чернега Д. Ф., Богушевський В. С., Готвянський Ю. Я. та ін.; за ред. Д. Ф. Чернеги, Ю. Я. Готвянського. — К. : Вища школа, 2006. — 503 с. — ISBN 966-642-310-3

Посилання[ред.ред. код]