Піраміда (геометрія)

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Неправильна шестигранна піраміда.

Пірамі́да — багатогранник, який складається з плоского багатокутника і точки (яка не лежить у площині основи) та всіх відрізків, що сполучають вершину піраміди з точками основи. Відрізки, що сполучають вершину піраміди з вершинами основи, називаються бічними ребрами.

Поверхня піраміди складається з основи і бічних граней. Кожна бічна грань — трикутник. Однією з його вершин є вершина піраміди, а протилежною стороною — сторона основи піраміди.

Висотою піраміди є перпендикуляр, опущений з вершини піраміди на площину основи.

Піраміда називається n-кутною, якщо її основою є n-кутник. Для трикутної піраміди існує власна назва — чотиригранник.

Надалі розглядатимемо лише піраміди з опуклим багатокутником в основі. Такі піраміди називаються опуклими багатогранниками.

Правильна піраміда (довершена) — якщо її основою є правильний багатокутник, центр якого збігається з основою висоти піраміди. Бічна поверхня правильної піраміди дорівнює добутку півпериметра основи на апофему.

Вісь правильної піраміди — пряма, яка містить її висоту. У правильній піраміді бічні ребра рівні між собою, а бічні грані — рівні рівнобедрені трикутники.

Висота бічної грані правильної піраміди, проведена з її вершини, називається апофемою. Бічною поверхнею піраміди називається сума площ її бічних граней.

Формули[ред.ред. код]

  • Площа бічної поверхні правильної піраміди дорівнює добутку половини периметра (півпериметру) основи на апофему:
    S_b = \frac{1}{2} P l = \frac{n}{2} b^2 \sin \alpha,
    де P — периметр, l — апофема, n — число сторін основи, b — бічне ребро,  \alpha — кут при вершині піраміди
  • Об'єм піраміди дорівнює одній третій добутку площі її основи S на висоту h:
    V = \frac{1}{3} S h

Властивості[ред.ред. код]

Такі три твердження є еквівалентними:

  1. Бокові ребра піраміди рівні;
  2. Бокові ребра піраміди нахилені до площини її основи під рівними кутами;
  3. Проекція вершини піраміди на площину її основи співпадає із центром кола, описаного навколо основи.

Такі три твердження також є еквівалентними:

  1. Вершина піраміди рівновіддалена від усіх сторін її основи;
  2. Двогранні кути при основі піраміди рівні;
  3. Вершина піраміди проектується до центру кола, вписаного в її основу.

Зрізана піраміда утворена пірамідою та площиною, яка паралельна до основи піраміди та перетинає її, відтинаючи подібну піраміду.

Див. також[ред.ред. код]

Джерела[ред.ред. код]