Момент імпульсу

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Класична механіка

Другий закон Ньютона
Історія класичної механіки[en]

Моме́нтом і́мпульсу називається векторна величина, яка характеризує інерційні властивості тіла, що здійснює обертальний рух відносно певної точки (початку координат).

Момент імпульсу в класичній механіці[ред.ред. код]

З'вязок між імпульсом і моментом

Визначення[ред.ред. код]

Моментом імпульсу матеріальної точки відносно початку координат в класичній механіці є величина, яка дорівнює векторному добутку радіус-вектора цієї частинки на її імпульс.

Відповідно,

  • L -- кутовий момент
  • r -- радіус-вектор частинки
  • p -- імпульс частинки

Якщо фізична система складається з багатьох матеріальних точок, то результуючий момент імпульсу відносно початку координат є сумою (інтегралом) усіх моментів імпульсу складових системи.

Для багатьох практичних задач, які вивчають властивості об'єкта, що обертається навколо певної осі, достатньо проаналізувати скалярне значення момента імпульсу, який є додатним, якщо обертання відбувається проти годинникової стрілки та від'ємним, якщо навпаки.

Відповідно до визначення векторного добутку векторів, скаляр момента імпульсу визначається як:

де θr,p -- кут між r та p, який вимірюється від r до p; такий порядок обходу векторів при визначенні кута є принциповим. Якщо порядок змінити на зворотний, зміниться й знак.

Для тіла сталої маси, яке обертається навколо фіксованої осі, момент імпульсу можна визначити як добуток момента інерції тіла відносно цієї осі на його кутову швидкість:

де I -- момент інерції частинки, ω -- вектор кутової швидкості.

Момент імпульсу у Спеціальній теорії відносності та класичній теорії поля[ред.ред. код]

У Спеціальній теорії відносності вектор моменту імпульсу дає компоненти антисиметричного тензора другого рангу - тензора моменту імпульсу та спіну:

,

або, у явному вигляді,

,

де - вектори моменту імпульсу та спіну.

Тензорне представлення вектора моменту імпульсу слідує з того, що перетворення Лоренца даного вектора збігається з перетворенням Лоренца компонент антисиметричного тензора.

У рамках класичної теорії поля тензором моменту імпульсу та спіну називають струм, який відповідає інваріантності лагранжіану поля по відношенню до перетворень Лоренца, які можна інтерпретувати як повороти у 4-просторі-часі:

,

де - тензор енергії-імпульсу, - поле, - величина-похідна, що визначає трансформаційні властивості поля по відношенню до перетворення Лоренца.

Наявність спінової частини у тензорі моменту імпульсу та спіну тісно пов'язано із симетрією тензора енергії-імпульсу відносно перестановки індексів. Якщо тензор енергії-імпульсу симетричний, то кутова та спінова частини тензору моменту імпульсу та спіну зберігаються (у термінах теорії поля) окремо. Якщо ж провести процедуру "занесення" спінової частини до кутової тензору моменту імпульсу та спіну, то одночасно із цим можна симетризувати тензор енергії-імпульсу. Така процедура називається процедурою Беліфанте.

Закон збереження момента імпульсу[ред.ред. код]

Момент імпульсу -- одна з фізичних величин, для якої діє фундаментальний закон збереження.

Назвемо замкненою (в сенсі обертання) таку систему, для якої сума моментів зовнішніх сил M дорівнює нулю. Для такої системи

та

.

Тобто, в замкненій системі момент імпульсу зберігається незмінним. Як випливає з теореми Нетер, таке твердження є наслідком ізотропності (тобто рівноцінності всіх напрямів) простору.

Момент імпульсу в квантовій фізиці[ред.ред. код]

Докладніше у статті Оператор кутового моменту

В квантовій механіці момент імпульсу визначається не як фізична величина, а як оператор над вектором стану.

Оператор момента імпульсу має вигляд:

де r та p -- оператори радіус-вектора та імпульсу системи. Для вільної частинки без спіну та електричного заряду, оператор момента імпульсу може бути наведений в такій формі:

, де -- оператор Гамільтона.

Окремі компоненти оператора момента імпульсу не комутують між собою. Внаслідок цього їх неможливо визначити одночасно. Детальніше дивись в статті оператор кутового моменту.

Джерела[ред.ред. код]

  • Єжов С. М., Макарець М. В., Романенко О. В. Класична механіка. — К. : ВПЦ "Київський університет", 2008. — 480 с.
  • Федорченко А. М. Теоретична механіка. — К. : Вища школа, 1975. — 516 с.
  • Биденхарн Л., Лаук Дж. Угловой момент в квантовой физике. Теория и приложения. — М. : Мир, 1984. — Т. 1. — 302 с.
  • Блохинцев Д. И. Основы квантовой механики. — М. : Наука, 1976. — 664 с.
  • Боум А. Квантовая механика: основы и приложения. — М. : Мир, 1990. — 720 с.
  • Варшалович Д. А., Москалев А. Н., Херсонский В. К. Квантовая теория углового момента. — Л. : Наука, 1975. — 441 с.
  • Зар Р. Теория углового момента. О пространственных эффектах в физике и химии. — М. : Мир, 1993. — 352 с.