Метод Рунге — Кутти

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Методи Рунге — Кутти — важлива група чисельних методів розв’язування (систем) звичайних диференціальних рівнянь. Названі на честь німецьких математиків Карла Рунге і Мартіна Кутти, які відкрили ці методи.

Класичний метод Рунге — Кутти 4-го порядку[ред.ред. код]

Метод Рунге — Кутти 4-го порядку настільки широко розповсюджений, що його часто називають просто методом Рунге — Кутти або RK4.

Розглянемо задачу Коші для системи диференціальних рівнянь довільного порядку, що записується у векторній формі як

.

Тоді значення невідомої функції в точці обчислюється відносно значення в попередній точці за формулою:

,

де — крок інтегрування, а коефіцієнти розраховуються таким чином:

Це метод 4-го порядку, тобто похибка на кожному кроці становить , а сумарна похибка на кінцевому інтервалі інтегрування є величиною .

Прямі методи Рунге — Кутти[ред.ред. код]

Група прямих методів Рунге — Кутти є узагальненням методу Рунге — Кутти 4-го порядку. Воно задається формулами

де

Конкретний метод визначається числом і коефіцієнтами і . Ці коефіцієнти часто впорядковують в таблицю

0

Для коефіцієнтів методу Рунге — Кутти мають справджуватись умови для .

Якщо ми хочемо, щоб метод мав порядок , то варто так само забезпечити умову де — наближення, отримане за методом Рунге — Кутти. Після багаторазового диференціювання ця умова перетвориться в систему поліноміальних рівнянь, розв'язки якої є коефіцієнтами методу.

Прямі методи розв'язку жорстких диференціальних рівнянь та їх систем неефективні внаслідок різкого збільшення кроків обчислень (при зростанні кроку інтегрування ) чи зростання похибки при недостатньо малому кроці .

Приклад розв'язання в середовищі MATLAB[ред.ред. код]

Розв'язання систем диференціальних рівнянь методом Рунге-Кутти є одним з найбільш поширених числових методів розв'язання в техніці. В середовищі MATLAB/Octave (досить поширена і зручна мова програмування для технічних обчислень) реалізований один з його різновидів — метод Дорманда-Принса.

Див. також[ред.ред. код]

Література[ред.ред. код]

  • William H. Press, Brian P. Flannery, Saul A. Teukolsky, William T. Vetterling. Numerical Recipes in C. Cambridge, UK: Cambridge University Press, 1988. (Розділи 16.1 і 16.2.).