Звичайні диференціальні рівняння

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Звичайні диференціальні рівняння — диференціальні рівняння вигляду

де  — невідома функція (можливо, вектор-функція; в такому випадку часто говорять про систему диференціальних рівнянь), що залежить від змінної t, штрих означає диференціювання по t. Число n називається порядком диференціального рівняння.

Розв'язування диференціального рівняння називають інтегруванням, а його розв'язок інтегралом диференціального рівняння. Якщо розв'язок диференціального рівняння можна задати у вигляді аналітичного рівняння

,

то говорять, що диференціальне рівняння розв'язується в квадратурах.

Задача розв'язування звичайного диференціального рівняння є знаходження невідомої функції. Загалом ця задача має нескінченно багато розв'язків. Кількість розв'язків обмежується накладанням на невідому функцію додаткових початкових або граничних умов.

Зведення рівняння вищого порядку до системи рівнянь[ред. | ред. код]

Вводячи змінні , , , звичайне диференціальне рівняння можна записати у вигляді системи звичайних диференціальних рівнянь першого порядку

Методи розв'язанння[ред. | ред. код]

Аналітичні[ред. | ред. код]

Чисельні[ред. | ред. код]

Звичайні диференціальні рівняння першого порядку[ред. | ред. код]

Звича́йним диференціальним рівня́нням пе́ршого поря́дку називають рівняння вигляду , де  — незалежна змінна,  — невідома функція від змінної ,  — похідна , а  — задана функція, яка визначена в деякій області простору .

Розв'язком звичайного диференціального рівняння першого порядку називають функцію , , яка задовольняє ці умови:

  1. ( неперервно диференційована на );
  2. ;
  3. .

Загальним розв'язком звичайного диференціального рівняння першого порядку називають функцію від незалежної змінної та параметра , яка задовольняє цю умову:

  • для будь-якого конкретного (допустимого) значення параметра функція від змінної , що пробігає допустимі значення з деякого числового проміжку (тобто, ), є розв'язком звичайного диференціального рівняння першого порядку.

Якщо загальний розв'язок звичайного диференціального рівняння першого порядку має таку властивість:

  • який би не був розв'язок , , звичайного диференційного рівняння першого порядку знайдеться значення параметра таке, що , то цей загальний розв'язок називають повним загальним розв'язком (у протилежному разі його ще називають неповним загальним розв'язком).

Інтегралом звичайного диференціального рівняння першого порядку називають співвідношення вигляду , якщо будь-яка неявно задана ним неперервно диференційовна функція є розв'язком звичайного диференціального рівняння першого порядку.

Рівняння з відокремлюваними змінними[ред. | ред. код]

Диференціальне рівняння першого порядку називається рівнянням з відокремлюваними змінними, якщо воно має вигляд:

Однорідні рівняння[ред. | ред. код]

Поняття однорідного диференціального рівняння першого порядку пов'язане з однорідними функціями. Диференціальне однорідне рівняння виду завжди зводиться до однорідного рівняння , де  — функція нульового степеню однорідності.

Лінійні рівняння першого порядку[ред. | ред. код]

Див. також[ред. | ред. код]

Література[ред. | ред. код]

  1. Самойленко А. М.; Перестюк М. О.; Парасюк I.О. (2003 р.). Диференціальні рівняння. Київ: Либідь. ISBN 966-06-0249-9. Архів оригіналу за 17 червня 2014. Процитовано 2 грудня 2015.  (укр.)
  2. Овчинников П. П.; Михайленко В. М. (2004 р.). Вища Математика, Частина 2. Київ: "Техніка". ISBN 966-575-100X.  (укр.)
  3. Шкіль М. І.; Сотніченко М. А. (1992 р.). Звичайні диференціальні рівняння: Навчальний посібник для вузів. Київ: Вища школа.  (укр.)
  4. Pontryagin, Lev (1962). Ordinary Differential Equations. Adiwes International Series in Mathematics. Pergamon Press.  (англ.)
  5. Л. С. Понтрягин. Обыкновенные дифференциальные уравнения — 4-е изд. — Москва, 1974. (рос.) (Підручник удостоєний державної премії СРСР)

Джерела[ред. | ред. код]

  • Федорюк М.В. (85). Обыкновенные дифференциальные уравнения (російська) (вид. Издание второе, переработанное и дополенное). Москва: Наука.  (рос.)