Трикутне число

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Números triangulares.png

Трикутне число — число кружечків, з яких можна скласти рівносторонній трикутник, так, як зображено на малюнку.

Послідовність трикутних чисел для n = 0, 1, 2, … починається так:

0, 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, … (Послідовність A000217 з Енциклопедії послідовностей цілих чисел)

Властивості[ред.ред. код]

  • Формули для n-го трикутного числа:
    • ;
    • ;
    •  — біноміальний коефіцієнт.
  • Сума двох послідовних трикутних чисел — квадратне число, тобто
.

Узагальнення[ред.ред. код]

Кожне трикутне число є фігурним.

Для будь-якого n-вимірного симплексу з ребрами довжини x відповідне фігурне число (кількість n-вимірних кульок, з яких можна скласти такий симплекс у сенсі, аналогічному до поясненого вище) дається формулою

Якщо довжина ребра дорівнює 2, то ця кількість кульок є також кількістю вершин. Наприклад, тетраедр з ребрами довжини 2 можна скласти з кульок; тетраедр має 4 вершини.

Див. також[ред.ред. код]


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.