Поліноміальний розподіл

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Поліноміальний розподіл
Щільність розподілу
Функція розподілу ймовірностей
Параметри
()
Носій функції
Розподіл ймовірностей
Функція розподілу ймовірностей (cdf)
Середнє
Медіана
Мода
Дисперсія
()
Коефіцієнт асиметрії
Коефіцієнт ексцесу
Ентропія
Твірна функція моментів (mgf)

У теорії імовірностей поліноміальний розподіл є узагальненням біноміального розподілу. Біноміальний розподіл є розподілом ймовірностей числа успіхів у незалежній схемі випробувань Бернуллі, з тією ж самою імовірністю успіху в кожному випробуванні.

Означення[ред.ред. код]

Нехай  — незалежні однаково розподілені випадкові величини, такі, що їх розподіл задається функцією імовірності:

.

Інтуїтивно подія означає, що дослід з номером привів до . Нехай випадкова величина дорівнює кількості дослідів, що приводять до результату :

.

Тоді розподіл вектора Має функцію імовірності

,

де

мультиноміальний коефіцієнт.

Вектор середніх і матриця коваріації[ред.ред. код]

Математичне сподівання випадкової величини має вигляд: . Діагональні елементи матриці коваріації є дисперсіями біноміальних випадкових величин, а тому

.

Для інших елементів маємо

.

Ранг матриці коваріації мультиноміального розподілу дорівнює .

Дивіться також[ред.ред. код]

Посилання[ред.ред. код]