Від'ємний біноміальний розподіл

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Від'ємний біноміальний розподіл
Функція ймовірностей
Negbinomial.gif
Помаранчева лінія показує математичне сподівання, яке для усіх малюнків дорівнює 10; зелена лінія показує стандартне відхилення.
Параметри r > 0 — number of failures until the experiment is stopped (integer, but the definition can also be extended to reals)
p ∈ [0,1] — ймовірність успіху в кожному випробуванні (дійсне число)
Носій функції k ∈ { 0, 1, 2, 3, … } — число успіхів
Розподіл імовірностей involving a binomial coefficient
Функція розподілу ймовірностей (cdf) the regularized incomplete beta function
Середнє
Мода
Дисперсія
Коефіцієнт асиметрії
Коефіцієнт ексцесу
Твірна функція моментів (mgf)
Характеристична функція
Генератриса (pgf)

Від’ємний біноміальний розподіл в теорії імовірностей — розподіл дискретної випадкової величини, рівної кількості невдач в послідовності випробувань Бернуллі з імовірністю успіху , проведеній до -го успіху.

Означення[ред. | ред. код]

Нехай — послідовність незалежних випадкових величин з розподілом Бернуллі, тобто

Побудуємо випадкову величину наступним чином. Нехай — номер -го успіху в цій послідовності. Тоді . Більш строго, покладемо . Тоді

.

Розподіл випадкової величини , визначеної таким чином, називається від’ємним біноміальним. Пишуть: .

Функції ймовірності і розподілу[ред. | ред. код]

Функція ймовірностей випадкової величини має вигляд:

.

Функція розподілу кусково-постійна, і її значення в цілих точках може бути виражене через неповну бета-функцію:

.

Моменти[ред. | ред. код]

Твірна функція моментів від’ємного біноміального розподілу має вигляд:

,

звідки

,