Атом

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Схематичне зображення планетарної моделі атома, запропонованої Резерфордом

А́том (або не́ділка[1] від грец. άτομοσ — неподільний) — найменша, електронейтральна, хімічнонеподільна частинка хімічного елемента. Атом складається з щільного ядра з позитивно заряджених протонів та електрично нейтральних нейтронів, яке оточене набагато більшою хмарою негативно заряджених електронів. Коли число протонів відповідає числу електронів, атом електрично нейтральний; в іншому випадку це є іон, з певним електричним зарядом. Атоми класифікують відповідно до числа протонів та нейтронів: число протонів визначає хімічний елемент, а число нейтронів визначає нуклід елемента.

Утворюючи між собою зв'язки, атоми об'єднуються в молекули і великі за розміром тверді тіла.

Про існування найдрібніших частинок речовини людство здогадувалося ще з давніх часів, проте підтвердження існування атомів було отримане лише в кінці 19-го століття. Але майже одразу ж стало зрозуміло, що атоми, в свою чергу, мають складну будову, якою визначаються їхні властивості.

Концепція атома як найменшої неподільної частинки матерії вперше була запропонована на початку I тисячоліття до н. е. Мохом і популяризована Демокритом — який, власне, і запровадив в науковий обіг термін «атом». В 17-му та 18-му століттях хіміки встановили, що хімічні речовини вступають в реакції в певних пропорціях, які виражаються за допомогою малих чисел. Крім того вони виділили певні найпростіші речовини, які назвали хімічними елементами. Ці відкриття привели до відродження ідеї про неподільні частинки. Розвиток термодинаміки і статистичної фізики показав, що теплові властивості тіл можна пояснити рухом таких частинок. Врешті-решт були експериментально визначені розміри атомів.

Наприкінці 19-го та на початку 20-го століть, фізики відкрили першу з субатомних частинок — електрон, а дещо пізніше атомне ядро, таким чином показавши, що атом не є неподільний. Розвиток квантової механіки дозволив пояснити не лише будову атомів, а також їхні властивості: оптичні спектри, здатність вступати в реакції й утворювати молекули тощо.

Схематичне зображення атома гелію з електронною хмарою навколо і складним за будовою ядром

Загальна характеристика будови атома[ред.ред. код]

Сучасні уявлення про будову атома базуються на квантовій механіці. На популярному рівні будову атома можна викласти у рамках хвильової моделі, яка опирається на модель Бора, але враховує також додаткові відомості з квантової механіки.

За цією моделлю:

  • Атоми складаються із елементарних частинок (протонів, електронів, та нейтронів). Маса атома в основному зосереджена в ядрі, тому більша частина об'єму відносно порожня. Ядро оточене електронами. Кількість електронів дорівнює кількості протонів у ядрі, кількість протонів визначає порядковий номер елемента в періодичній системі. У нейтральному атомі сумарний негативний заряд електронів дорівнює позитивному зарядові протонів. Атоми одного елемента з різною кількістю нейтронів називаються ізотопами.
  • У центрі атома знаходиться крихітне, позитивно заряджене ядро, що складається з протонів та нейтронів.
  • Ядро оточене електронною хмарою, яка займає більшу частину його об'єму. В електронній хмарі можна виділити оболонки, для кожних з яких існує кілька можливих орбіталей. Заповнені орбіталі складають електронну конфігурацію, властиву для кожного хімічного елемента.
    • Кожна орбіталь може містити до двох електронів, що характеризуються трьома квантовими числами: основним, орбітальним і магнітним.
    • Кожен електрон на орбіталі має унікальне значення четвертого квантового числа: спіну.
    • Орбіталі визначаються специфічним розподілом ймовірності того, де саме можна знайти електрон. Приклади орбіталей та їхні позначення приведені на рисунку праворуч. «Границею» орбіталі вважається відстань, на якій імовірність того що електрон може перебувати поза нею є меншою 90%.
    • Кожна оболонка може містити не більше від строго визначеного числа електронів. Наприклад, найближча до ядра оболонка може мати максимум два електрони, наступна — 8, третя від ядра — 18
  • Коли електрони приєднуються до атома, вони займають орбіталь із найнижчою енергією. Лише електрони зовнішньої оболонки можуть брати участь в утворенні міжатомних зв'язків. Атоми можуть віддавати та приєднувати електрони, стаючи позитивно або негативно зарядженими іонами. Хімічні властивості елемента визначаються тим, з якою легкістю ядро може віддавати або здобувати електрони. Це залежить як від числа електронів так і від ступеня заповненості зовнішньої оболонки.

Електронні оболонки та орбіталі[ред.ред. код]

Складні атоми мають десятки, а для дуже важких елементів, навіть сотні електронів. Згідно з принципом нерозрізнюваності часток електронні стани атомів формуються всіма електронами, й неможливо визначити, де перебуває кожен із них. Однак, в так званому одноелектронному наближенні, можна говорити про певні енергетичні стани окремих електронів.

Згідно з цими уявленнями існує певний набір орбіталей, які заповнюються електронами атома. Ці орбіталі утворюють певну електронну конфігурацію. На кожній орбіталі може знаходитися не більше двох електронів (принцип виключення Паулі). Орбіталі групуються в оболонки, кожна з яких може мати лише певне фіксоване число орбіталей (1, 4, 10 тощо). Орбіталі поділяють на внутрішні й зовнішні. В основному стані атома внутрішні оболонки повністю заповнені електронами.

На внутрішніх орбіталях електрони перебувають дуже близько до ядра й сильно до нього прив'язані. Щоб вирвати електрон з внутрішньої орбіталі потрібно надати йому велику енергію, до кількох тисяч електрон-вольт. Таку енергію електрон на внутрішній оболонці може отримати лише поглинувши квант рентгенівського випромінювання. Енергії внутрішніх оболонок атомів індивідуальні для кожного хімічного елемента, а тому за спектром рентгенівського поглинання можна ідентифікувати атом. Цю обставину використовують в рентгенівському аналізі.

На зовнішній оболонці електрони перебувають далеко від ядра. Саме ці електрони беруть участь в формуванні хімічних зв'язків, тому зовнішню оболонку називають валентною, а електрони зовнішньої оболонки валентними електронами.

Властивості[ред.ред. код]

Періодична система елементів
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Fl Uup Lv Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Ядерні властивості[ред.ред. код]

Докладніше: Атомне ядро

Основна маса атома зосереджена у ядрі, яке складається з нуклонів: протонів і нейтронів, зв'язаних між собою силами ядерної взаємодії.

Кількість протонів у ядрі атома визначає його атомним номером і те, якому елементові належить атом. Наприклад, атоми вуглецю містять 6 протонів. Всі атоми із певним атомним номером мають однакові фізичні характеристики й проявляють однакові хімічні властивості. В періодичній таблиці елементи перелічені в порядку зростання атомного номера.

Загальна кількість протонів та нейтронів в атомі елемента називається масовим числом і визначає його атомну масу, оскільки протон та нейтрон мають масу приблизно рівну 1 а.о.м. Нейтрони в ядрі не впливають на те, якому елементові належить атом, але хімічний елемент може мати атоми із однаковою кількістю протонів і різною кількістю нейтронів. Такі атоми мають однаковий атомний номер, але різну масу, й називаються ізотопами елементу. Наприклад, атоми Гідрогену завжди містять один протон, але існують ізотопи без нейтронів (водень-1, який іноді називають протієм — найпоширеніша форма), з одним нейтроном (дейтерій) і двома нейтронами (тритій)[2]. Відомі елементи складають неперервний натуральний ряд за числом протонів у ядрі, починаючи з атома водню з одним протоном і закінчуючи атомом унуноктію, в ядрі якого 118 протонів[3].

Коли пишуть назву ізотопу, після неї пишуть масове число. Наприклад, ізотоп вуглець-14 містить 6 протонів та 8 нейтронів, що в сумі становить масове число 14. Інший популярний метод нотації полягає в тому, що атомна маса позначається верхнім індексом перед символом елементу. Наприклад, вуглець-14 позначається, як 14C.

Атомна маса елементу, наведена в періодичній таблиці, є усередненим значенням маси ізотопів, що зустрічаються в природі. Усереднення проводиться відповідно до поширеності ізотопу в природі.

Із збільшенням атомного номера зростає додатній заряд ядра, а, отже, кулонівське відштовхування між протонами. Щоб втримати протони вкупі необхідно дедалі більше нейтронів. Проте велика кількість нейтронів нестабільна, і ця обставина накладає обмеження на можливий заряд ядра і кількість хімічних елементів, що існують в природі. Всі ізотопи елементів періодичної системи, починаючи з номера 83 (Бісмут), радіоактивні[4][5]. Хімічні елементи з великими атомними номерами мають дуже малий час життя, можуть бути створені лише при бомбардуванні ядер легших елементів іонами, й спостерігаються лише під час експериментів з використанням прискорювачів. Станом на лютий 2008 року найважчим синтезованим хімічним елементом є унуноктій[6].

Чимало ізотопів хімічних елементів нестабільні й розпадаються з часом. Це явище використовується радіоелементним аналізом для визначення віку об'єктів, що має велике значення для археології та палеонтології.

Маса[ред.ред. код]

Докладніше: Атомна маса

Оскільки найбільший внесок в масу атома вносять протони і нейтрони, повне число цих частинок у нукліді називають масовим числом. Значення масового числа близьке до атомної маси нукліда. Масу спокою нукліда часто наводять в атомних одиницях маси (а.о.м.) або Дальтонах (Да). Ця одиниця визначається як 1/12 частина маси спокою нейтрального атома Карбону-12, яка приблизно дорівнює 1,66 ×10-24 г[7]. Водень-1 або протій — найлегший ізотоп Гідрогену, і атом з найменшою масою, має масу близько 1,007825 а.о.м.[8]. Маса атома приблизно дорівнює добутку масового числа на атомну одиницю маси[9]. Найважчий стабільний ізотоп — Плюмбум-208[4] з масою 207,9766521 а.о.м.[10]. Через те, що маси навіть найважчих атомів у звичайних одиницях (наприклад, в грамах) дуже малі, в хімії для вимірювання кількості речовини використовують молі. В одному молі будь-якої речовини міститься одне й те саме число атомів (приблизно 6,022×1023). Це число (число Авогадро) вибране таким чином, що якщо маса елемента дорівнює 1 а.о.м., то моль атомів цього елемента буде мати масу 1 г. Наприклад, атом Карбону-12 має масу 12 а.о.м., тому 1 моль вуглецю має масу 12 г[7].

Форма і розміри[ред.ред. код]

Розмір атома є величиною, що важко піддається вимірюванню, адже центральне ядро оточує розмита електронна хмара. Для атомів, що утворюють тверді кристали, відстань між суміжними вузлами кристалічної ґратки може слугувати наближеним значенням їхнього розміру. Для атомів, що кристалів не формують, використовують інші техніки оцінки, включаючи теоретичні розрахунки. Наприклад, розмір атома Гідрогену оцінюють як 1,2×10−10 м. Це значення можна порівняти з розміром протона (що є ядром атому водню): 0,87×10−15 м і переконатися в тому, що ядро атома водню в 100 000 разів менше, ніж сам атом. Атоми інших елементів зберігають приблизно те саме співвідношення. Причиною цього є те, що елементи із більшим позитивно-зарядженим ядром притягують електрони сильніше.

Ще одною характеристикою розмірів атома є радіус ван дер Ваальса — віддаль, на яку до даного атома може наблизитися інший атом. Міжатомні віддалі в молекулах характеризуються довжиною хімічних зв'язків або ковалентним радіусом.

Енергетичні рівні[ред.ред. код]

Докладніше: Квантова механіка

Значення енергії, які може мати атом, обчислюються й інтерпретуються, виходячи з положень квантової механіки. При цьому враховуються такі фактори, як електростатична взаємодія електронів з ядром та електронів між собою, спіни електронів, принцип нерозрізнюваності часток. У квантовій механіці стан, в якому перебуває атом описується хвильовою функцією, яку можна знайти з розв'язку рівняння Шредінгера. Існує певний набір станів, кожен із яких має певне значення енергії. Стан із найменшою енергією називається основним станом. Інші стани називаються збудженими. Атом перебуває в збудженому стані скінченний час, випромінюючи рано чи пізно квант електромагнітного поля (фотон) і переходячи в основний стан. В основному стані атом може перебувати довго. Щоб збудитися, йому потрібна зовнішня енергія, яка може надійти до нього тільки із зовнішнього середовища. Атом випромінює чи поглинає світло лише певних частот, які відповідають різниці енергій його станів.

Можливі стани атома індексуються квантовими числами, такими як спін, квантове число орбітального моменту, квантове число повного моменту. Детальніше про їхню класифікацію можна прочитати в статті електронні терми атомів.

Квантові переходи в атомі[ред.ред. код]

Між різними станами атомів можливі переходи, викликані зовнішнім збуренням, найчастіше електромагнітним полем. Внаслідок квантування станів атома оптичні спектри атомів складаються із окремих ліній, якщо енергія кванта світла не перевищує енергію іонізації. При вищих частотах оптичні спектри атомів стають неперервними. Ймовірність збудження атома світлом падає із подальшим ростом частоти, але різко зростає при певних характерних для кожного хімічного елемента частотах в рентгенівському діапазоні.

Збуджені атоми випромінюють кванти світла з тими ж частотами, на яких відбувається поглинання.

Переходи між різними станами атомів можуть викликатися також взаємодією із швидкими зарядженими частками.


Хімічні властивості[ред.ред. код]

Хімічні властивості атома визначаються в основному валентними електронами — електронами на зовнішній оболонці. Кількість електронів на зовнішній оболонці визначає валентність атома.

Атоми останнього стовпчика періодичної таблиці елементів мають повністю заповнену зовнішню оболонку, а для переходу електрона на наступну оболонку потрібно надати атому дуже велику енергію. Тому ці атоми інертні, не схильні вступати в хімічні реакції. Інертні гази зріджуються й кристалізуються тільки при дуже низьких температурах.

Атоми першого стовпчика періодичної таблиці елементів мають на зовнішній оболонці один електрон, і є хімічно активними. Їхня валентність дорівнює 1. Характерним типом хімічного зв'язку для цих атомів у кристалізованому стані є металічний зв'язок.

Атоми другого стовпчика періодичної таблиці в основному стані мають на зовнішній оболонці 2 s-електрони. Їхня зовнішня оболонка заповнена, тому вони мали б бути інертними. Але для переходу із основного стану із конфігурацією електронної оболонки s² у стан із конфігурацією s¹p¹ потрібно дуже мало енергії, тож ці атоми мають валентність 2, проте вони проявляють меншу активність.

Атоми третього стовпчика періодичної таблиці елементів (у короткій формі) мають у основному стані електронну конфігурацію s²p¹. Вони можуть проявляти різну валентність: 1, 3, 5. Остання можливість виникає тоді, коли електронна оболонка атома доповнюється до 8 електронів і стає замкнутою.

Атоми четвертого стовпчика короткої форми періодичної таблиці елементів здебільшого мають валентність 4 (наприклад, вуглекислий газ CO2), хоча можлива й валентність 2 (наприклад, чадний газ CO). До цього стовпчика належить вуглець — елемент, який утворює найрізноманітніші хімічні сполуки. Сполукам вуглецю присвячений особливий розділ хімії — органічна хімія. Інші елементи цього стовпчика — кремній, германій при звичайних умовах є твердотільними напівпровідниками.

Елементи п'ятого стовпчика мають валентність 3 або 5.

Приклад гібридизації орбіталей — sp³ гібридизація

Елементи шостого стовпчика короткої форми періодичної таблиці в основному стані мають конфігурацію s²p4 і загальний спін 1. Тому вони двовалентні. Існує також можливість переходу атома в збуджений стан s²p³s' зі спіном 2, в якому валентність дорівнює 4 або 6.

Елементам сьомого стовпчика короткої форми періодичної таблиці не вистачає одного електрона на зовнішній оболонці для того, щоб її заповнити. Вони здебільшого одновалентні. Проте можуть вступати в хімічні сполуки в збуджених станах, проявляючи валентності 3,5,7.

Для перехідних елементів характерне заповнення зовнішньої s-оболонки, перш ніж повністю заповнюється d-оболонка. Тому вони здебільшого мають валентність 1 або 2, але в деяких випадках один із d-електронів бере участь в утворенні хімічних зв'язків, і валентність стає рівною трьом.

При утворенні хімічних сполук атомні орбіталі видозмінюються, деформуються і стають молекулярними орбіталями. При цьому відбувається процес гібридизації орбіталей — утворення нових орбіталей, як специфічної суми базових.

Аналіз і методи візуалізації[ред.ред. код]

Поверхня золота, на якій можна розрізнити окремі атоми. Зображення зроблене за допомогою скануючого тунельного мікроскопа. На зображені видно окремі смужки із кількох атомів із заглибленнями між ними. Така структура зумовлена перебудовою кристалічної ґратки на поверхні.

Атоми надто малі, щоб їх можна було спостерігати за допомогою оптичного мікроскопа, роздільна здатність якого не перевищує десятих долей мікрона. Роздільна здатність електронного мікроскопа загалом порівняна з розмірами атома, але все ж отримання зображення атомів у них складна технічна задача. Найкраще окремі атоми можна розрізнити за допомогою скануючого тунельного мікроскопа. При цьому те зображення, яке бачить дослідник, є тільки комп'ютерною реконструкцією на моніторі. Скануючий тунельний мікроскоп відчуває нерівності на поверхні, в тому числі нерівності атомарних розмірів, «на дотик». У ньому тонкий щуп сканує поверхню в горизонтальному напрямку, здійснюючи такі рухи у вертикальному напрямку, щоб підтримувати постійним тунельний струм. Саме ці вертикальні зміщення й записуються електронікою, яка надалі реконструює зображення.

Історія[ред.ред. код]

Докладніше у статті Атомістика

Поняття атом, як і саме слово, має давньогрецьке походження, хоча істинність гіпотези про існування атомів знайшла своє підтвердження лише в 20 столітті. Основною ідеєю, яка стояла за даним поняттям протягом всіх сторіч, було уявлення про світ як про набір величезної кількості неподільних елементів, які є дуже простими за своєю структурою і існують від початку часів.

Натурфілософський атомізм[ред.ред. код]

Демокріт
Дальтон
Резерфорд

Першим почав проповідувати атомістичне вчення в 5 столітті до нашої ери філософ Левкіпп. Потім естафету підхопив його учень Демокріт. Збереглися лише окремі фрагменти їх робіт, з яких стає зрозумілим, що вони виходили з невеликої кількості досить абстрактних фізичних гіпотез:

«Солодкість і гіркота, спека і холод смисл визначення, насправді ж [тільки] атоми і пустота».

За Демокрітом, вся природа складається з атомів, найдрібніших часток речовини, які спочивають чи рухаються в абсолютно пустому просторі. Всі атоми мають просту форму, а атоми одного сорту є тотожними; різноманіття природи відображає різноманіття форм атомів і різноманіття способів, в які атоми можуть зчіплюватись між собою. І Демокріт, і Левкіп вважали, що атоми, почавши рухатись, продовжують рухатись за законами природи.

Найбільш важким для давніх греків було питання про фізичну реальність основних понять атомізму. В якому розумінні можна було говорити про реальність пустоти, якщо вона, не маючи матерії, не може мати ніяких фізичних властивостей? Ідеї Левкіпа та Демокріта не могли служити задовільною основою теорії речовини в фізичному плані, оскільки не пояснювали, ні з чого складаються атоми, ні чому атоми неділимі.

Через покоління після Демокріта, Платон запропонував своє рішення цієї проблеми: «найдрібніші частки належать не царству матерії, а царству геометрії; вони являють собою різні тілесні геометричні фігури, обмежені плоскими трикутниками».

Через тисячу років абстрактні міркування давніх греків проникли в Індію і були сприйняті деякими школами індійської філософії. Але тоді як західна філософія вважала, що атомістична теорія повинна стати конкретною і об'єктивною основою теорії матеріального світу, індійська філософія завжди сприймала матеріальний світ як ілюзію. Коли атомізм з'явився в Індії, то він прийняв форму теорії, за якою реальність у світі має процес, а не субстанція, і що ми присутні у світі як ланки процесу, а не як згустки речовини.

Тобто і Платон, і індійські філософи вважали приблизно так: якщо природа складається з дрібних, але скінченних за розмірами, часток, то чому їх не можна розділити, хоча б в уяві, на ще дрібніші часточки, які б стали предметом подальшого розгляду

Римський поет Лукрецій (96 — 55 роки до н. е.) був одним з небагатьох римлян, які проявляли інтерес до чистої науки. У своїй поемі Про природу речей (De rerum natura) він детально вибудував факти, які свідчать на користь атомістичної теорії. Наприклад, вітер, який дує з великою силою, хоча ніхто не може його бачити, напевне складається з часток, замалих щоб їх розгледіти. Ми можемо відчувати речі на відстані по запаху, звуку і теплу, які поширюються, залишаючись невидимими. Лукрецій пов'язує властивості речей з властивостями їхніх складових, тобто атомів: атоми рідини малі й мають округлу форму, тому рідина тече так легко і просочується через пористу речовину, тоді як атоми твердих речовин мають гачки, якими вони зчеплені між собою. Так само і різноманітні смакові відчуття і звуки різної гучності складаються з атомів відповідних форм — від простих і гармонійних до звивистих та нерегулярних. Вчення Лукреція були засуджені церквою, оскільки він дав досить матеріалістичну їхню інтерпретацію: наприклад, уявлення про те, що Бог, запустивши один раз атомний механізм, більш не втручається в його роботу, чи те, що душа помирає разом з тілом.

Початки наукової теорії атома[ред.ред. код]

Одна з перших теорій про будову атома, яка має вже сучасні обриси, була описана Галілеєм (1564–1642). За його теорією речовина складається з часток, які не перебувають в стані спокою, а під впливом тепла рухаються у всі сторони; тепло — є нічим іншим як рухом часток. Структура часток є складною, і якщо позбавити будь-яку частку її матеріальної оболонки, то зсередини бризне світло. Галілей був першим, хто, хоча і в фантастичній формі, представив будову атома.

У 19 столітті Джон Дальтон відкрив закон кратних відношень і, виходячи з нього розвинув теорію, названу ними «новою системою хімічної філософії», за якою хімічні речовини складаються з атомів, але він припускав, що вони неподільні[11]. Новий поштовх у становленні сучасного розуміння атома дала молекулярно-кінетична теорія.

1897 року Джозеф Джон Томсон, вивчаючи катодні промені, відкрив електрон і прийшов до висновку, що вони є у кожному атомі. Таким чином, було спростоване припущення, що атоми є неподільними компонентами речовини[12]. Він створив першу модель будови атома, яка отримала назву моделі сливового пудинга, де негативно заряджені електрони, що плавають в однорідній позитивно зарядженій сфері. Ця модель була замінена в 1909 році Ганс Гейгер, Ернест Резерфорд і Ернест Марсден після дослідів із бомбардування золотої фольги альфа-частинками виявили, що невелика частина альфа-частинки відбиваються, що йде врозріз з прогнозами моделі Томсона. Виходячи з цих результатів, Резерфорд створив нову модель атома, що отримала назву планетарної. У цій моделі додатній заряд і основна маса атома зосереджена в ядрі невеликий в центрі, і негативно заряджених електронів, що обертаються навколо ядра.

Нільс Бор побудував першу квантову теорію атома водню, яка отримала назву моделі Бора. Модель Бора зуміла пояснити оптичні спектри атомів. Подальше її вдосконалення призвело до розвитку квантової механіки. Значний внесок у становлення наукової атомістики зробив Жан Батист Перрен, експериментально підтвердивши теорію броунівського руху Альберта Ейнштейна. Експерименти Генрі Мозлі і встановлений ним закон Мозлі дозволили пов'язати атомний номер хімічного елемента із електричним зарядом ядра. У 1913, досліджуючи іони Неону в канальних променях, Джозеф Джон Томсон вперше відкрив ізотопи.

Див. також[ред.ред. код]

Посилання[ред.ред. код]

Джерела[ред.ред. код]

  • Білий М. У. (1973). Атомна фізика. Київ: Вища школа. 
  • Ландау Л. Д., Лившиц Е. М. (1974). Теоретическая физика. т. ІІІ. Квантовая механика. Нерелятивистская теория. Москва: Наука. 
  • Бронштейн М. П. (1980). Атомы и электроны (Серия: «Библиотечка «Квант»»). Москва: Наука. 
  • Шехтер В. М., Ансельм А. А. (1984). Атом и квантовая механика (Серия: «Физика»). Москва: Знание. 
  • Demtröder, Wolfgang (2002). Atoms, Molecules and Photons: An Introduction to Atomic- Molecular- and Quantum Physics (1st ed.). Springer.

Примітки[ред.ред. код]

  1. Застарілий український синонім до слова «атом», створений українськими пуристами наприкінц 19 століття, шляхом калькування з грецької мови. Цей відповідник увійшов до переліку, що став однією з підстав для звинувачення тодішніх пуристів у буржуазному націоналізмові радянською владою після згортання політики коренізації в СРСР[1].
  2. Howard S. Matis. (9 серпня 2000). «The Isotopes of Hydrogen». Guide to the Nuclear Wall Chart. Lawrence Berkeley National Lab. Архів оригіналу за 2011-08-21. Процитовано 2007-12-21. 
  3. Rick Weiss. (17 жовтня 2006). «Scientists Announce Creation of Atomic Element, the Heaviest Yet». Washington Post. Архів оригіналу за 2011-08-21. Процитовано 2007-12-21. 
  4. а б Sills (2003)
  5. Belle Dumé. (23 квітня 2003). «Bismuth breaks half-life record for alpha decay». Physics World. Архів оригіналу за 2011-08-21. Процитовано 2007-12-21. 
  6. Oganessian, Yu. Ts.; et al. (2006). «Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions». Physical Review C 74: 044602. doi:10.1103/PhysRevC.74.044602.
  7. а б Mills і ін (1993).
  8. Chung Chieh. (22 січня 2001). «Nuclide Stability». University of Waterloo. Процитовано 2007-01-04. 
  9. «Atomic Weights and Isotopic Compositions for All Elements». National Institute of Standards and Technology. Архів оригіналу за 2011-08-21. Процитовано 2007-01-04. 
  10. G. Audi, A. H. Wapstra, C. Thibault. The Ame2003 atomic mass evaluation (II) // Nuclear Physics. — A729 (2003) С. 337-676. Процитовано 2008-02-07.
  11. Dalton J. A New System of Chemical Philosophy, Part 1. London and Manchester: S. Russell. (1808)
  12. «Biografia J. J. Thomsona» (en). Нобелівська фундація. 1906. Архів оригіналу за 2013-05-12.