Перейти до вмісту

Теорія множин Цермело — Френкеля

Матеріал з Вікіпедії — вільної енциклопедії.
Теорія множин Цермело — Френкеля
Названо на честь Абрахам Френкель і Ернст Цермело Редагувати інформацію у Вікіданих
Тема вивчення/дослідження аксіома об'ємності, аксіома регулярності, аксіома схеми виділення, аксіома пари, аксіома об'єднання, Аксіомна схема підстановки, аксіома нескінченності і аксіома булеана Редагувати інформацію у Вікіданих
Підтримується Вікіпроєктом Вікіпедія:Проєкт:Математика Редагувати інформацію у Вікіданих

Теорія множин Цермело — Френкеля (позначається ZF) — найпоширеніша аксіоматика теорії множин, і, через це, найпоширеніша основа математики.

ZFC — теорія множин Цермело — Френкеля з аксіомою вибору (AC).

ZFC містить єдине примітивне онтологічне поняття — множина, та єдине онтологічне припущення, що всі об'єкти в досліджуваному просторі (наприклад, всі математичні об'єкти) є множинами.

Вводиться єдине бінарне відношення — приналежність до множини; позначає що множина є елементом множини , та записується як .

ZFC є теорією першого порядку; в ZFC містяться аксіоми, в яких використовується логіка першого порядку. Ці аксіоми описують: порівняння, існування, побудову та впорядкування множин.

Передумови створення

[ред. | ред. код]

Аксіоматична теорія множин — напрям у математичній логіці, присвячений вивченню фрагментів змістовної теорії множин методами математичної логіки. З цією метою фрагменти теорії множин подають у вигляді аксіоматичної теорії. В основі сучасної теорії множин лежить система аксіом, які приймають без доведення і з яких виводять усі теореми теорії множин. Передумовами створення такої теорії стало відкриття деяких парадоксів (антиномій, суперечностей) так званої «наївної» теорії множин. Серед таких парадоксів найбільш відомими є парадокси Рассела[1] та Кантора.

Першою аксіоматикою такого роду була система Z Цермело (E. Zermelo, 1908). Однак у цій системі неможливо було природним чином формалізувати деякі розділи математики, і А.Френкель (A. Frenkel, 1922) запропонував доповнити систему Z новим принципом, який назвав аксіомою підстановки. Отриману систему називають системою аксіом Цермело — Френкеля і позначають ZF.

Аксіоми ZFC

[ред. | ред. код]

Порівняння

[ред. | ред. код]

Дві множини рівні тоді й тільки тоді, коли вони мають одні й ті ж елементи.[2]

Існування

[ред. | ред. код]

Існує така множина A, що включає в себе пусту множину {} та для будь-якого належного їй елемента B включає також і множину, сформовану як об'єднання B та її синґлетону {B}.[3]

Існує множина без елементів.[4]

Таку множину зазвичай позначають як ∅ або {} та називають порожньою множиною.

Побудови

[ред. | ред. код]

Для будь-яких множин A та B існує множина C така, що A та B є її єдиними елементами. Множина C позначається {A, B} і називається невпорядкованою парою A та B.[5]

Тобто, якщо A = B, то існує множина C така, що вона складається з одного елемента {A, A} = {A} (який має назву синглетона).

Для будь-якої множини А існує множина B, елементами якої є ті й тільки ті елементи що є підмножинами A.[6]

Якщо ввести відношення підмножини , то формулу можна спростити:

Множину B називають булеаном множини A та позначають .

Для двох множин існує третя, яка включає в себе всі елементи обох, і тільки їх.[7]

З аксіоми прямо випливає, що об'єднання множин також є множиною. Множина B називається об'єднанням A, і позначається A.

Для будь-якої множини А і властивості P існує множина B, елементами якої є ті й тільки ті елементи множини А, які маю властивість P.[8]

Для кожної такої властивості P (предиката, що не використовує символ B), існує окрема аксіома виділення. Тому комплект таких аксіом називають схемою.

Нехай А - множина, і P(x,y) - предикат. Тоді якщо для кожного x існує єдиний y, такий що P(x,y) істинний, тоді існує множина всіх y, для яких знайдеться такий x ∈ A, що P(x,y) істинний. [9]

Впорядкування

[ред. | ред. код]

В будь-якій непорожній множині А є елемент B, що перетин А та B є порожньою множиною.[10]

Якщо ввести операцію перетину множин , то формулу можна спростити:

Для довільного сімейства непорожніх множин, що не перетинаються, існує множина, яка має рівно один спільний елемент з кожною множиною даного сімейства, навіть якщо множин у сімействі нескінченно багато і невизначено правило вибору елемента з кожної множини.[11]

Надлишковість

[ред. | ред. код]

Див. також

[ред. | ред. код]

Примітки

[ред. | ред. код]

Джерела

[ред. | ред. код]
  • Андрійчук В.І., Комарницький М.Я., Іщук Ю.Б. (2003). Вступ до дискретної математики. Львів: Видавничий центр ЛНУ ім. І.Франка. с. 254.
  • Хаусдорф Ф. Теория множеств. — Москва ; Ленинград : ОНТИ(інші мови), 1937. — 304 с. — ISBN 978-5-382-00127-2.(рос.)