Бензен

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Бензен
Benzene-2D-full.svg
Структурна формула, запропонована Кекуле
Benzene-aromatic-3D-balls.png
Кульково-стриженва модель
{{{ImageAltL2}}}
Формула скелету бензену
Benzene-3D-vdW.png
Просторова модель
Назва за IUPAC Бензен
Інші назви Бензол
Циклогекса-1,3,5-трієн
Ідентифікатори
Номер CAS 71-43-2
PubChem 241
KEGG C01407
RTECS CY1400000
SMILES
InChI
Властивості
Молекулярна формула C6H6
Молярна маса 78,11 г/моль
Зовнішній вигляд Безбарвна рідина
Густина 0,8765(20) г/см³
Тпл 5,5 °C, 278,7 K
Ткип 80,1 °C, 353,3 K
Розчинність (вода) 1,8 г/л (15 °C) [1]
Діелектрична проникність (ε) 2,3 (за 25 °C)
Показник заломлення (nD) 1,50112
В'язкість 0,652 Па•с за 20 °C
Дипольний момент 0 Д
Небезпеки
Класифікація ЄС Вогненебезпечно F Токсично T
Канцероген категорії 1
Мутаген категорії 2
NFPA 704
NFPA 704.svg
3
2
0
Температура спалаху −11,63 °C, 262 K
Температура самозаймання 595 °C
Пов'язані речовини
Пов'язані речовини Толуен
Якщо не зазначено інше, дані приведені для речовин у стандартному стані (за 25 °C, 100 кПа)
Інструкція з використання шаблону
Примітки картки

Бензе́н (також бензол) — перший представник гомологічного ряду ароматичних вуглеводнів, молекулярна формула C6H6. Безбарвна летка рідина з характерним запахом. Вперше отриманий Майклом Фарадеєм з конденсату піролізу китового жиру в 1825 році.

Промислово бензен добували із фракцій кам'яновугільної смоли, але з середини 20-го сторіччя практично весь промисловий обсяг бензену виробляється дегідрогенізацією нафтової сировини. Бензен має цінні властивості як розчинник, але через його високу токсичність і канцерогенність таке використання наразі дуже обмежено. Ця сполука є сировиною для промислового органічного синтезу, більше двох третин бензену іде на виробництво циклогексану, кумолу та етилбензену.

Історія дослідження[ред.ред. код]

Бензен — перший із відкритих людиною аренів. У чистому вигляді він був виділений Майклом Фарадеєм шляхом дистиляції та кристалізації зі світного газу, що є продуктом високотемпературного розкладу китового жиру, і використовувався у вуличних ліхтарях . Тоді ж була встановлена відносна густина його пари та кількісне співвідношення між атомами елементів, що входять до його складу, на основі цих даних Фарадей обрахував емпіричну формулу — C2H2. Помилка у формулі була зроблена через те, що на той час вважалось, що атомна маса Карбону становить 6 а.о.м.. 1834 року Мітчерліх виділив бенезен шляхом сухої дистиляції бензойної кислоти із вапном, він встановив правильну емпіричну формулу (C6H6) і назвав цю сполуку «бензином» від бензойної кислоти[2] Проте Лібіх запропонував використовувати назву бензол, закінчення якої взяте зі слова нім. Öl — олія. Сучасна назва «бензен» рекомендується до використання IUPAC у зв'язку з тим, що суфікс -ол відповідає спиртам[3]. 1860 року Кекуле назвав бензен та інші сполуки з подібними властивостями ароматичними, через те, що більшість із них мали приємний запах.[4]

Historic Benzene Formulae V.3.svg
Історичні формули бензену, зліва направо: Клауса (1867), Дюара (1867), Ладенбурга (1869), Армстронга-Байєра (1887), Тіле (1899), Кекуле (1865)
Historic Benzene Formulae Kekulé (original).png
Benzene circle.svg
Формули Кекуле із публікації 1872 року Формула Полінга

.

На час встановлення правильної емпіричної формули бензену написання структурних формул органічних сполук ще не було прийнятим у хімії. Проте навіть після того, як для багатьох аліфатичних вуглеводнів були запропоновані структурні формули, для бензену це було зробити складніше: формула C6H6 свідчила про належність цієї сполуки до ненасичених вуглеводнів, проте бензен на відміну від алкенів та алкінів краще вступає в реакції заміщення ніж приєднання. У 1865 році Кекуле запропонував для бензену структурну формулу у вигляді шестичленного циклу з трьома подвійними зв'язками, що чергуються з одинарними. Широко відомими є твердження про те, що ідея циклічної структури бензену прийшла до Кекуле, коли йому наснився змій, що кусає себе за хвіст. У пізніших описах сну згадується про шістьох мавп, які тримають одна одну за задні лапи. Насправді циклічну структуру бенезну вперше опублікував у своїй книжці австрійський хімік Йозеф Лошмідт 1861 року і Кекуле бачив це видання[5].

Формули Кекуле не могли пояснити деяких особливостей бензену, наприклад того, що не існувало двох різних ізомерів 1,2-диметилбензену. 1872 року вчений опублікував статтю, в якій зазначав, що хоча для бензену можна припустити існування двох різних валентних ізомерів, реальна сполука є середнім між цими двома внаслідок осциляції (переходу) подвійних зв'язків[4][2]. Проте навіть таке доповнення не могло пояснити відмінність бензену від відомих ненасичених вуглеводнів, тому інші вчені продовжували пропонувати альтернативні варіанти структури цієї речовини. Серед них можна відзначити формули Дюара 1867 року та призматичну структуру Ладенбурга (1869). Зараз відомо, що такі сполуки справді можна синтезувати, вони є валентними ізомерами бензену[2].

Із пояснень властивостей бензену запропонованих до відкриття природи ковалентного зв'язку, найближчим до сучасного є теорія «парціальних валентностей» (від лат. partialis — частковий) запропонована Тіле 1899 року. Згідно з нею атоми Карбону в ненасичених сполуках мають часткові вільні валентності, які в молекулі бензену «замикаються» між собою, внаслідок чого різниця між одинарними і подвійними зв'язками зникає. Створення теорії ковалентного зв'язку дозволило краще зрозуміти структуру бенезену, 1926 року Інгольд зробив припущення, що в молекулі цієї сполуки електрони π-зв'язків зміщені до простих σ-зв'язків, внаслідок чого вони не існують в ізольованому стані, а вирівнюються між одинарними. Пізніше Лайнус Полінг виходячи із квантово-механічних уявлень, запропонував вважати, що в молекулі бензену відсутні окремі π-зв'язки, а всі їхні електрони об'єднані у суцільну π-хмару[4].

У науковій літературі на позначення бензену використовують як формулу Полінга, так і формули Кекуле, хоча останні і не відображають структуру цієї молекули коректно.

Фізичні властивості[ред.ред. код]

Заломлення світла бензеном (зверху) та водою (знизу)

Бензен — безбарвна рідина зі своєрідним запахом. Густина — 0.88 г/см³. За температури 80.1 °C кипить, а за 5.5 °C замерзає в білу кристалічну масу.

Бензен завдяки своїй симетричності є неполярною речовиною, тому не розчиняється у воді, проте утворює з нею азеотропну суміш (91.17 мас%) з температурою кипіння 69.25 °C. З більшістю неполярних розчинників змішується в будь-яких відношеннях, сам є добрим розчинником для багатьох органічних речовин.

В ультрафіолетовій ділянці спектру поглинання проявляється рядом смуг тонкої структури із відстанню між ними 5—6 нм (найінтенсивніше воно спостерігається в діапазоні 170–120 нм і менше в діапазоні — 270–240 нм).[4]

Будова[ред.ред. код]

Делокалізація подвійних зв'язків у молекулі бензену

Молекулярна формула бензену — C6H6. Фізичними методами вдалось встановити, що молекула цієї речовини має форму плоского шестикутника із атомами Карбону у вершинах. Довжина всіх C—C зв'язків однакова і становить 0.140 нм, що більше ніж у подвійного зв'язку C=C (0.134 нм) і менше ніж в одинарного (0.154 нм). Бензен — неполярна сполука з дипольним моментом (μ) рівним нулю[4].

Всі атоми Карбону в молекулі бензену перебувають у стані sp2-гібридизації, три гібридні орбіталі розташовуються під кутом 120° одне до одного і беруть участь в утворенні C—C та C—H σ-зв'язків. Шість негібридних p-орбіталей розташовуються перпендикулярно до площини молекули, їхні електрони беруть участь у формуванні суцільної π-хмари, що утворюється внаслідок делокалізації цих орбіталей. Делокалізація супроводжується зменшенням вільної енергії у порівнянні із гіпотетичним 1,3,5-циклогексатрієном з ізольованими подвійними зв'язками. Ця різниця в енергії називається енергією спряження або резонансу. Її можна обрахувати на основі вимірювання теплоти гідрування:

  • при гідруванні циклогексену виділяється 120 кДж/моль теплоти;
  • тоді для 1,3,5-циклогексатрієну можна було б очікувати 3×120 кДж/моль = 360 кДж/моль теплоти;
  • гідрування бензену насправді дає приблизно 208 кДж/моль;
  • енергію спряження можна обрахувати як різницю теплот гідрування 360 кДж/моль — 208 кДж/моль = 152 кДж/моль

Зменшення вільної енергії має наслідком значну стабілізацію молекули бензену та пояснює всі його специфічні властивості[4].

Утворення суцільної π-хмари, в якій електрони рівномірно розподілені між шістьма атомами Карбону, надає молекулі бензену так званого ароматичного характеру або ароматності. Карбоновий скелет молекули бензену з таким характером зв'язку називають бензеновим кільцем, або бензеновим ядром[4].

Хімічні властивості[ред.ред. код]

Внаслідок значної стійкості π-хмари для бензену, на відміну від неароматичних ненасичених вуглеводнів, найхарактерніші реакції заміщення, а не приєднання, хоча останні також можуть відбуватись за достатньо жорстких умов. Заміщення відбувається за електрофільним механізмом. Також бензен вступає в реакції окиснення.

Реакції електрофільного заміщення[ред.ред. код]

Бензен вступає в реакції електрофільного заміщення, що відбуваються за таким механізмом: на першій стадії відбувається утворення π-комплексу між електрофілом (у формі катіону або сильно поляризованої молекули Eσ+-Nuσ−) та молекулою бензену, внаслідок перекривання вакантних орбіталей першого із суцільною електронною хмарою другого. Після цього пара p-електронів виходить із спряженого бензольного кільця і бере участь в утворенні σ-зв'язку із електрофілом, таким чином π-комплекс перетворюється у σ-комплекс або інтермедіат Уелланда. Ця проміжна сполука має позитивний заряд і позбавлена ароматичного характеру, через що є менш стійкою порівняно із ароматичним кільцем, в яке зазвичай швидко перетворюється внаслідок відщеплення протона (цей етап відбувається через ще один проміжний π-комплекс).[4]

Механізм реакції електрофільного заміщення

Алкілювання та ацилювання за Фріделем-Крафтсом[ред.ред. код]

Алкілювання бензену здійснюється алкілгалогенідами, алкенами та спиртами, ацилювання — карбоновими кислотами, галогенангідридами та ангідридами, обидва типи реакцій каталізуються кислотами Люїса. Ці реакції названо в честь їх першовідкривачів Шарля Фріделя та Джеймса Крафтса.

Роль каталізатора в цьому типі реакцій полягає у тому, що він взаємодіє із алкілюючим чи ацилюючим реагентом і забезпечує утворення карбкатіону або поляризованого комплексу. Наприклад при взаємодії хлорметану та алюміній хлориду утворюється комплекс із підсиленою електрофільністю атома карбону:

Friedel-Crafts alkylation AlCl3.svg

Прикладом реакції алкілювання може бути етилювання бензену хлоретаном.

Етилювання бензену

Проте у промисловості етилбензен частіше отримують реакцією з етиленом, яка також проходить за присутності оксиду алюмінію, фосфатної або сульфатної кислоти:

EtC6H5route.png

Продуктами реакцій ацилювання бензену є ароматичні кетони. Прикладом може бути реакція із ацетилхлоридом, продуктом якої є метиларилкетон:

Benzene acylation.svg

Галогенування[ред.ред. код]

На відміну від ненасичених вуглеводнів бензен не знебарвлює бромну воду. Але для нього характерні реакції галогенування, що відбуваються за механізмом електрофільного заміщення, у присутності кислот Льюїса. Наприклад при взаємодії із бромом утворюється бромбензен:

Benzene halogenation.svg

Нітрування[ред.ред. код]

Характерною для бензену є реакція нітрування для якої використовують нітруючу суміш, яка складається із концентрованої нітратної кислоти та концентрованої сульфатної кислоти як водовіднімаючого засобу. В цій реакції утворюється нітробензен, що є попередником у синтезі аніліну

Benzene nitration.svg

Сульфування[ред.ред. код]

При дії на бензен концентрованої сульфатної кислоти відбувається його сульфування з утворенням бензосульфонової кислоти, що може бути попередником у синтезі фенолу:

Benzene sulfonation.svg

Реакції приєднання[ред.ред. код]

Бензен вступає і в реакції приєднання, але значно важче, ніж у реакції заміщення. При цьому він виявляє властивості ненасичених вуглеводнів. Так, у присутності нікелевого каталізатора і при нагріванні відбувається реакція гідрування бензену з утворенням циклогексану:

Benzene hydrogenation reaction.svg

При цьому атоми Гідрогену приєднуються молекулою бензену за рахунок розриву подвійних зв'язків. Бензен вступає також у реакцію приєднання однієї, двох або трьох молекул хлору. Ця реакція відбувається за вільнорадикальним механізмом, для утворення радикалів хлору необхідне ультрафіолетове світло (досягається опроміненням ртутно-кварцевою лампою). Продуктом повного приєднання є гексахлорциклогексан:

Benzene chlorination on light.svg

Реакції окиснення[ред.ред. код]

На повітрі бензен горить сильно кіптявим полум'ям, оскільки вміст Карбону у ньому значний. Суміш пари бензену з повітрям вибухова. Завдяки ароматичному характеру бензен стійкий до дії окисників: не окиснюється розчином перманганату калію і нітратною кислотою. У присутності каталізатора ванадій (V) оксиду реагує із молекулярним киснем, внаслідок чого утворюється малеїновий ангідрид:

Benzene oxydation.svg

Також бензен окиснюється озоном, ця реакція історично використовувалась для встановлення його будови.

Одержання і виробництво[ред.ред. код]

На сьогоднішній день існує кілька принципово різних способів виробництва бензолу.

Отрмання з кам'яновугільної смоли
  1. Коксування кам'яного вугілля. Цей процес історично був першим та служив основним джерелом бензолу до Другої світової війни. Останнім часом частка бензолу, одержуваного цим способом, становить менше 10 %. Слід додати, що бензол, одержуваний з кам'яновугільної смоли, містить значну кількість тіофена, що робить такий бензол сировиною, непридатним для ряду технологічних процесів.
  2. Каталітичний риформінг (аромаізінг) бензинових фракцій нафти. Цей процес є основним джерелом бензолу в США. У Західній Європі, Росії та Японії цим способом отримують 40 — 60 % від загальної кількості сполуки. У цьому процесі крім бензолу утворюються толуол та ксилоли. З огляду на те, що толуол утворюється в кількостях, що перевищують попит на нього, його також частково переробляють в: бензол — методом гідродеалкілірування; суміш бензолу та ксилолів — методом диспропорціонування;
  3. Піроліз бензинових та більш важких нафтових фракцій. До 50 % бензолу виробляється цим методом. Поряд з бензолом утворюються толуол та ксилоли. У деяких випадках всю цю фракцію направляють на стадію деалкілірування, де і толуол, і ксилоли перетворюються на бензол.
  4. тримеризація ацетилену

При пропущенні ацетилену при 600 ° C над активованим вугіллям з хорошим виходом утворюється бензол та інші ароматичні вуглеводні (реакція М. Д. Зелінського):

2Н2 → С6H6

Застосування[ред.ред. код]

Бензен є важливою сировиною для хімічної промисловості. Великі кількості його йдуть для одержання нітробензену, який за реакцією М. М. Зініна відновлюють в анілін:

AnilinUtvor.jpg

У техніці цю реакцію проводять при дії на бензен хлоридної кислоти в присутності залізних стружок. Залізо, реагуючи з кислотою, утворює водень, який у момент виділення відновлює нітробензен. З аніліну синтезують найрізноманітніші органічні барвники і фармацевтичні препарати. Значні кількості бензену використовують для синтезу фенолу, який йде на виробництво фенолформальдегідних смол. Гексахлороциклогексан, який одержують з бензену (реакція наведена вище), під назвою гексахлоран застосовується в сільському господарстві як один з найефективніших засобів для знищення комах. Крім того, бензен використовують для синтезу багатьох інших органічних сполук і як розчинник

Бензен Отримання Речовина Застосування
+ Cl2/AlCl3 → C6H5Cl + Cl2/AlCl31,4-дихлорбензен 1,4-дихлорбензен Інсектицид
+ NaOH/Cu → Фенол Фенол Розчинник, реагент для органічного синтезу, пластмаси, барвники, ліки, вибухівка
+ H2SO4Бензосульфонова кислота (C6H5-SO2OH) + NaOH → Фенол
+ Пропен (CH3-CH=CH2) → Кумен (C6H5-CH(CH3)2) + O2 → Гідроперокисид кумену (C6H5-C(CH3)2-OOH) → Фенол + Ацетон
+ HNO3Нітробензен + 6H→ Анілін Анілін (C6H5-NH2) Барвники, ліки
+ H2/Ni → ЦиклогексанКапролактам Капролактам Синтетичні волокна
+ O2/V2O5Малеїнова кислотаМалеїновий ангідрид Малеїновий ангідрид Поліестери
+ Етилен (CH2=CH2) → Етилбензен (C6H5-CH2-CH3) + ZnO → Стирен (C6H5-CH=CH2) + H2 Стирен Пластмаси, синтетичні каучуки
+ HOSO2Cl → Бензосульфанілхлорид (C6H5-SO2Cl) → Бензосульфаніламід Бензосульфаніламід Ліки, барвники

.

Нижче наведено процентне співвідношення використання

У суттєво менших кількостях бензол використовується для синтезу деяких інших сполук. Зрідка і в крайніх випадках, через високої токсичності, бензол використовується в якості розчинника. Крім того, бензол входить до складу бензину. Зважаючи на високу токсичності його зміст новими стандартами обмежена введенням до 5 %.

Бензен Етилбензол Кумол Циклогексан Анілін Хлорбензол Ацетон Фенол Стирол Бісфенол А Адипінова кислота Капролактам Полістирол Полікарбонат Епоксидна смола Фенольні смоли Нейлон 6-6 Капрон
Основні хімічні товари та полімери, отримані з бензолу. Натиснувши на зображення завантажите відповідну статтю

Гомологи бензену[ред.ред. код]

Бензен, як і інші вуглеводні, утворює свій гомологічний ряд, що має загальну формулу CnH2n-6. Гомологи бензену можна розглядати як продукти заміщення одного або кількох атомів Гідрогену в молекулі бензену різними вуглеводневими радикалами, що утворюють бічні ланцюги.

Найпростішим гомологом бензену є метилбензен — продукт заміщення атома водню в молекулі бензену метильною групою — СН3

Toluene.png

Метилбензен, що має технічну назву толуен, являє собою безбарвну рідину з характерним запахом. Температура кипіння 110,6 °C. Густина 0,867 г/см³ За своїми хімічними властивостями метилбензен, або толуен, як інші гомологи бензену, дуже близький до бензену. Так, при дії концентрованої нітратної кислоти, в присутності сульфатної кислоти він легко піддається нітруванню з утворенням тринітротолуену — сильно вибухової речовини

TrynitrotoluolUtvor.jpg

Метилбензен (толуен) добувають з кам'яновугільної смоли і коксового газу разом з бензеном, а потім відокремлюють шляхом дробної перегонки. Метилбензен, або толуен застосовують головним чином для виробництва вибухових речовин — тринітротолуену, який називають ще тротилом і толом. Крім того, толуен служить сировиною для виробництва барвників і інших органічних продуктів.

Примітки[ред.ред. код]

  1. Arnold D., Plank C., Erickson E., Pike F. Solubility of Benzene in Water // Industrial & Engineering Chemistry Chemical & Engineering Data Series. — 3 (1958) (2). DOI:10.1021/i460004a016.
  2. а б в Nagendrappa G. Benzene and its isomers. How many structures can we draw for C6H6? // Resonance. — 6 (2001) С. 74-78. DOI:10.1007/BF02839086.
  3. Гордієнко О., Корнілов М., Голуб О., Ісаєв С., Толмачова В., Ковтун О. Сучасна хімічна термінологія та номенклатура орган. хімії // Вісник Національного університету «Львівська політехніка». — 620 (2008) С. 66-9.
  4. а б в г д е ж и Ластухін Ю.О., Воронов С.А. (2006). Органічна хімія. Львів: Центр Європи. с. 864. ISBN 966-7022-19-6. 
  5. Noe R.C., Bader A. Facts are better than dreams // Chemistry in Britain. — (1993) С. 126-8.

Джерела[ред.ред. код]

Посилання[ред.ред. код]