Кардинальне число: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Glovacki (обговорення | внесок)
Немає опису редагування
Рядок 1: Рядок 1:
'''Кардинальним числом''' (кардиналом) в [[теорія множин|теорії множин]] називається об'єкт, який характеризує [[потужність множини]]. Кардинальне число деякої множини ''A'' позначається як |''A''| або Card ''A''
'''Кардинальним числом''' (кардиналом) в [[теорія множин|теорії множин]] називається об'єкт, який характеризує [[потужність множини]]. Кардинальне число деякої множини ''A'' позначається як |''A''| або Card ''A''


[[Георг Кантор]] давав таке визначення кардинального числа:"Потужністю даної множини А називається та загальна ідея, яка залишається у нас, коли ми, мислячи про цю множину, відволікаємся як від всіх властивостей його елементів,так і від їх порядку".
[[Георг Кантор]] давав таке визначення кардинального числа: "Потужністю даної множини А називається та загальна ідея, яка залишається у нас, коли ми, мислячи про цю множину, відволікаємся як від всіх властивостей її елементів, так і від їх порядку".





Версія за 09:36, 4 вересня 2016

Кардинальним числом (кардиналом) в теорії множин називається об'єкт, який характеризує потужність множини. Кардинальне число деякої множини A позначається як |A| або Card A

Георг Кантор давав таке визначення кардинального числа: "Потужністю даної множини А називається та загальна ідея, яка залишається у нас, коли ми, мислячи про цю множину, відволікаємся як від всіх властивостей її елементів, так і від їх порядку".


Для скінченної множини A кардинальним числом |A| є натуральне число, яким позначається кількість елементів цієї множини.

Для нескінченних множин кардинальне число є узагальненням поняття числа елементів.

Хоча кардинальні числа нескінченних множин не мають відображення в натуральних числах, але їх можна порівнювати:

Нехай A і B нескінченні множини, тоді логічно можливі такі чотири випадки:

  1. Існує взаємно однозначна відповідність між A і B, тобто A ~ B і |A|=|B|.
  2. Існує взаємно однозначна відповідність між множиною A і деякою власною підмножиною B' множини B. Тоді кажуть, що потужність множини A не більша від потужності множини B і записують |A|≤|B|.
  3. Множина A рівнопотужна деякій підмножині множини B і, навпаки, множина B рівнопотужна деякій підмножині множини A, тобто A~B' B і B~A' A. За теоремою Кантора-Бернштейна, у цьому випадку виконується A ~ B, тобто |A|=|B|.
  4. Не існує взаємно однозначної відповідності між множиною A і жодною підмножиною множини B і, також, не існує взаємно однозначної відповідності між множиною B і жодною підмножиною множини A. З цієї ситуації випливало б, що потужності множин A і B непорівнювані між собою.

Однак більш глибокі дослідження в теорії множин показали, що, спираючись на аксіому вибору, можна довести неможливість четвертого випадку.

Таким чином, потужності будь-яких двох множин A і B завжди порівнювані між собою. Отже, для кардинальних чисел |A| і |B| довільних множин A і B виконується одне з трьох співвідношень: |A|=|B|, |A|≤|B| або |B|≤|A|. Якщо |A|≤|B|, однак множина A нерівнопотужна множині B, то |A|<|B|.

Операції над кардинальними числами

Додавання

Нехай а та b два кардинальні числа. Їх сумою a+b називається кардинальне число множини A ∪ B , де А та В - довільні множини, що не перетинаються такі, що: a=[A], b=[B]. Очевидно, що операція додавання комутативна і асоціативна.

Множення

Добутком двох кардинальних чисел а та b називається кардинальне число множини , де a=[A], b=[B], А та В-довільні множини. Операція множення комутативна та асоціативна.

Піднесення до степеня

Степенем кардинального числа а з показником b називається кардинальне число множини , де a=[A], b=[B].

Арифметика кардинальних чисел

Додавання та множення кардинальних чисел є операціями асоціативними та комутативними тобто:

Множення дистрибутивне відносно додавання,тобто:

Мають місце рівності:


Істинні наступні твердження:

1) якщо і , то

2) якщо , то

3) якщо , то

4) якщо , то


Теорема 1.

для будь-якої множини А.


Теорема 2.(Г.Кантор)

для будь-якого кардинального числа а.

Числа алеф

Докладніше: Числа алеф

Кардинальне число множини N всіх натуральних чисел (зокрема, і будь-якої зліченної множини) позначають через (читається «алеф-нуль»). Кардинальне число континуальних множин позначають c або («алеф-один»). Наступні кардинальні числа в порядку зростання позначають . Г. Кантор довів, що не існує множини найбільшої потужності, тобто не існує найбільшого кардинального числа.

Гіпотеза континуума

Континуум-гіпотеза стверджує, що не існує множини, кардинальне число якої розташоване між (кардиналом множини натуральних чисел) і (кардиналом множини дійсних чисел), тобто < < .

Див. також

Джерела