Теселяція

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
15 відомих станом на 2015 рік п'ятикутних паркетів

Теселя́ція (від лат. tessella — шматок глини, з якого випікали мозаїку), також паркет, паркетаж; — мозаїка, складена з кількох абсолютно однакових форм, які прилягають одна до одної без проміжків і не перекривають одна одну.

Парке́т — заміщення площини багатокутниками без пробілів і перекриттів, в якому будь-які два багатокутники мають або спільну сторону, або тільки спільну вершину, або зовсім не мають спільних точок.

Прості геометричні теселяції можуть складатися тільки з трьох фігур: рівнобічних трикутників, квадратів і гексагонів.

Одне з перших вивчень теселяцій було зроблене в 1619  році Йоганном Кеплером, який описав правильні багатокутники на площині.

У 1891 році російський кристалограф Євграф Степанович Федоров довів, що кожна частина такої мозаїки з трансляційною симетрією побудована відповідно до однієї з 17 груп ізометрії, тобто існує всього 17 можливих способів розміщення фігури для того, щоб заповнити нею всю поверхню. Всі 17 з них відобразилися в незбагненних гравюрах голландського художника Моріца Ешера.

Термінологія[ред.ред. код]

Замощення, мозаїки, паркети, розбиття[ред.ред. код]

Паркети інакше називають "заміщенням", "мозаїками" (англ. tessellation, tiling), "розбиттям площини" (англ. partition), "паркетажами". Замощення тривимірного простору і просторів вищих розмірностей часто називають сотами.

Паркети з областями (плитками) довільної форми іноді називають "картами".

Покриття та упаковки[ред.ред. код]

Якщо об'єднання кількох фігур містить дану фігуру Ф, то кажуть, що ці фігури утворюють покриття фігури Ф. При цьому фігури, які покривають можуть перекриватися, але покривають фігуру Ф без пробілів.

Упаковка - це розміщення всередині даної фігури декількох фігур, які не мають спільних точок, крім, можливо, граничних (тобто без перекриття).

Заміщення - це розбиття фігури на частини. Заміщення є одночасно покриттям і упаковкою.

Протоплитки[ред.ред. код]

Протоплитки паркету (англ. prototiles, також прототипи) — це плитки (форми), що входять в паркет. Кожна плитка паркету конгруентна однією з протоплиток.

Так, єдина протоплитка п'ятикутного паркету — правильний шестикутник; протоплиткою правильного сферичного п'ятикутного паркету є пентагон; безліч протоплиток ромботришестикутного паркету складаються з рівностороннього трикутника, квадрата і гексагона.

Паркет називається k — едричним, якщо множина його протоплиток (протомножина) складається з k плиток.

Плитки паркету також називають гранями, а сторони багатокутних плиток — ребрами, за аналогією з термінологією для багатогранників.

Конфігурація вершин і граней[ред.ред. код]

Ромботришестикутний паркет складається з плиток трьох типів: рівносторонній трикутник, квадрат і гексагон. Ці плитки розташовуються навколо кожної з вершин в наступному порядку: трикутник, квадрат, шестикутник, квадрат. Такий порядок називається конфігурацією вершини [en] паркету і записується в формі 3.4.6.4. У разі, якщо два і більше числа в цій послідовності йдуть підряд, використовується скорочений запис. При цьому записи, що відрізняються лише циклічною перестановкою чисел або зміною порядку запису на протилежний (наприклад, 3.3.4.3.4 і 4.3.3.4.3), позначають одну і ту ж конфігурацію вершини; в той же час запис 3.4.4.6 не є еквівалентною запису 3.4.6.4. У неоднорідних паркетах можуть зустрічатися вершини з різними конфігураціями.

Конфігурацією граней[en] називається послідовність степенів вершин цієї межі при обході її в одному напрямку. Конфігурація граней записується послідовністю чисел в квадратних дужках або з префіксом V.

Якщо усі вершини деякого паркету мають одну і ту ж конфігурацію, то всі грані [ [Двоїстий багатогранник | двоїстого]] йому паркету мають одну і ту ж конфігурацію. Наприклад, конфігурації граней паркету, двоїстого ромботришестикутному паркету 3.4.6.4, записуються як V3.4.6.4.

Види паркету[ред.ред. код]

У багатьох випадках застосовується умова еквівалентності кожної з протоплиток паркету топологичному диску; іншими словами, плитка не повинна складатися з декількох частин (квазіполіміно), містити «отвори», бути нескінченною смугою і т.п..

Правильні паркети[ред.ред. код]

Паркети, складені з однакових правильних багатокутників, називають правильними паркетами (англ. regular tilings). Існує три правильних заміщення площини: трикутний паркет, квадратний паркет і шестикутний паркет.

Правильні паркети

Правильні паркети називають також Платоновими паркетами .

Поліформи, що розташовуються на правильних паркетах, називаються відповідно поліамондами, полімін і полігексами.

Для позначення паркету з правильних p - кутників, розташованих по q навколо кожної вершини, застосовується символ Шлефлі { p , q }. Символи Шлефлі трьох правильних мозаїк - {3,6}, {4,4} і {6,3}.

Напівправильні паркети[ред.ред. код]

Паркети, що складаються з правильних багатокутників двох або більше типів, такі, що для будь-яких двох вершин паркету існує перетворення симетрії (самопоэднання), що переводить одну з них в іншу, називаються напівправильними паркетами або архімедовим паркетами.

Існує 8 напівправильних паркетів. Один з восьми напівправильних паркетів кирпатий тришестикутний паркет є хіральним, тобто не збігається з власним дзеркальним відображенням.

Напівправильні паркети (Архімедові паркети)
Усічений квадратний паркет
4.8.8 
Кирпатий квадратний паркет
3.3.4.3.4 
Тришестикутний паркет
3.6.3.6 
Усічений шестикутний паркет
3.12.12 
Ромботришестикутний паркет
3.4.6.4 
Ромбоусічений тришестикутний паркет
4.6.12 
Ізокирпатий трикутний паркет
3.3.3.4.4 
Кирпатий тришестикутний паркет (одна з двух дзеркальних копій)
3.3.3.3.6 

Однорідні паркети

Існує два визначення, що призводять до одного і того ж набору з 8 напівправильних паркетів на площині.

Перше, «локальне» визначення, полягає в тому, що вершинні конфігурації всіх вершин повинні збігатися. Іншими словами, послідовності граней навколо будь-яких двох вершин паркету повинні бути однаковими: одні і ті ж багатокутники повинні йти в одному і тому ж (або в протилежному) порядку.

Друге, «глобальне» визначення, вимагає, щоб для будь-яких двох вершин паркету існувало перетворення симетрії (самопоєнання паркету), що переводить одну з них в іншу.

Грюнбаум і Шепард поділяють терміни «архімедів паркет» і «однорідний паркет»: до першої групи відносяться паркети, відповідні «локального» визначення, а до другої — «глобального». Хоча на евклідовій площині дві ці множини збігаються, в інших просторах існують архимедові паркети, що не є однорідними.

У математичній літературі значення термінів «архімедів паркет», «напівправильный паркет» і «однорідний паркет» варіруються.

Квазиправильні паркети[ред.ред. код]

Квазіправильний багатогранник

"'Квазіправильний паркет"' (або багатогранник) — однорідний паркет (або багатогранник), що складається з граней двох видів, які чергуються навколо кожної вершини; іншими словами, кожна грань оточена гранями іншого типу.

На Евклідової площини існує лише один квазіправильний паркет — тришестикутний паркет з вершинною конфігурацією 3.6.3.6. На сфері існує два квазіправильних паркетів сферичних багатогранника — кубооктаэдр і икосододекаэдр.

На площині Лобачевського існує безліч квазиправильных паркетів виду , де .

Неоднорідні паркети[ред.ред. код]

Існує безліч неоднорідних паркетів, що складаються з правильних багатокутників.

Неоднорідні паркети з правильних багатокутників
32.62, 36 
32.62, 3.6.3.6 
32.4.12, 36 
3.42.6, 3.6.3.6 

Неоднорідні паркети Періодичні неоднорідні паркет можна класифікувати за кількістю орбіт вершин, ребер і граней. Якщо число орбіт вершин одно "n", паркет називається "n"-однорідним або "n"-ізогональным; якщо число орбіт ребер дорівнює "n" — "n"-ізотоксальным. Вищенаведені приклади являють собою чотири з двадцяти 2-однорідних паркетів.

Неперіодичні паркети і аперіодичні множини плиток[ред.ред. код]

Неперіодична мозаїка P3, вперше опублікована Р. Пенроузом в 1978 році
Ромби Пенроуза з виступами і западинами, що забезпечують неможливість періодичного покриття без використання кольорових плиток і ліній
Двовимірна нерозбірлива плитка Соколара — Тейлора
Вікісховище має мультимедійні дані за темою: Мозаїка Пенроуза

Розбиття T називається періодичним, якщо серед симетрій "T" існують два паралельні перенесення в непаралельних напрямках. У цьому випадку мозаїку можна вважати складаною з повторень невеликого фрагмента, викладеного із елементів у вузлах деякої решітки. Безліч прототипів (протомножин) "P" називається "аперіодичним", якщо воно реалізується в якихось розбиттях площин, але жодне з них не є періодичним.

Перший приклад аперіодичної множини плиток був знайдений Робертом Берджером в 1966 році і включав в себе 20426 плиток Вана. Плитки Вана являють собою квадрати одного розміру з пофарбованими сторонами; при побудові мозаїки дозволено поєднувати плитки лише одноколірними сторонами і заборонено перевертати плитки.

Пізніше були знайдені аперіодичні протомножини з меншим числом плиток. Роджер Пенроуз виявив аперіодичні протомножини, що складаються з двох плиток.

У 2010 році Джошуа Соколар і Джон Тейлор запропонували аперіодичну множину, що складається з єдиної плитки, яка являє собою правильний шестикутник з нанесеною розміткою у вигляді кольорових ліній і з додатковими обмеженнями, пов'язаними з взаємним розташуванням "'не"' торкаючись один одного. Існує модифікація, яка не використовує подібних обмежень, але використовує несвязну плитку, тобто, плитку, що не є топологічним диском. Існування єдиної зв'язковий плитки без додаткової розмітки та обмежень, здатної покрити площину тільки аперіодично, залишається відкритою проблемою.

Сферичні багаторанники[ред.ред. код]

"'Сферичний паркет"' або "'сферичний багатогранник"' — розбиття сфери на сферичні багатокутники, великих кіл.

Кожному з 5 платонових тіл відповідає правильний сферичний паркет. Формально, нехай "S" — сфера з центром "O", що збігається з центром багатогранника "P". Проведені з "O" промені, що проходять через вершини багатогранника "P", перетинають сферу "S" в точках, які є вершинами відповідного сферичного паркету; ребра багатогранника "P" відповідають дугам великих кіл на "S".

Крім сферичних аналогів п'яти «платонових тіл», існує два сімейства правильних сферичних багатогранників, які не мають еквівалентів серед багатогранників з плоскими гранями: осоэдри — багатогранники з двома вершинами, які перебувають на полюсах сфери, межі яких є конгруэнтными двокутниками, і диэдри — двоїсті осоэдрам двогранники, вершини яких знаходяться на екваторі сфери.

Зірчастий семикутний паркет в моделі Пуанкаре на верхній напівплощині. Чорні лінії утворюють "'правильний семикутний паркет порядку 3"' (паркет, в кожній вершині якого сходяться три однакових правильних семикутника).
Правильний семикутний паркет порядка 3 в моделі Пуанкаре на дискі

Гіперболічні паркети[ред.ред. код]

Аксіома паралельності Евкліда (точніше, одне з еквівалентних їй тверджень) свідчить:

Через точку, що не лежить на даній прямій, проходить не більше однієї прямої, що лежить з даною прямою в одній площині і не перетинає її.

У геометрії Лобачевського, замість неї приймається наступна аксіома:

Через точку, що не лежить на даній прямій, проходять принаймні дві прямі, що лежать з даної прямої в одній площині і не перетинають її.

Для зображення гіперболічної площині застосовується одна з існуючих моделей — модель Бельтрамі — Клейна, конформный диск Пуанкаре, модель Пуанкаре на півплощини.

На евклідової площини існує лише три правильні паркети і 8 напівправильних. На гіперболічній площині існує нескінченна множина навіть правильних паркетів, включаючи паркети з сімома і більше рівносторонніми трикутниками навколо вершини, п'ятьма і більше квадратами, чотирма і більше правильними пятикутниками (паркет з трьома пятикутниками навколо вершини є сферичним додекаедром), чотирма і більше правильними шестикутниками і трьома і більш рівними правильними багатокутниками з кількістю сторін більше 6.

Завдання на паркеті[ред.ред. код]

Велика кількість завдань і головоломок пов'язана з розбиттям прямокутників (або інших зв'язаних фігур) на плитки з певної заданої безлічі протоплиток. Самі протоплиткі при цьому можуть являти собою зв'язкові об'єднання осередків правильного паркету.

Зокрема, існує клас задач на заміщення прямокутників m × n плитками доміно таким чином, щоб в отриманому розбитті не було прямої лінії, що перетинає прямокутник від краю до краю і не перетинає жодної плитки доміно; такі прямокутники називаються «міцними».

В інших завданнях встановлюється додаткове обмеження на кількість плиток кожного виду, які використовуються в заміщення. У завданнях, пов'язаних з пентаміно, потрібно покрити 12 фігурами задану підмножину квадратного паркету, що складається з 60 клітин; при цьому кожна плитка повинна бути використана тільки один раз.

Перерахування паркету[ред.ред. код]

Завдання визначення кількості паркету, що складаються з опуклих багатокутників заданого типу, вирішена лише частково:

  • Будь-яким трикутником або чотирикутником можна замістити площину.
  • Відомо 15 п'ятикутників, здатних замістити площину; невідомо, чи є цей перелік повним. Проблема перерахування п'ятикутних паркетів має багату історію.
  • Відомо 3 типи шестикутників, здатних замістити площину.
  • Неможливо замістити площину однаковими опуклими багатокутниками з числом сторін, більшим або рівним семи.

Дивіться також[ред.ред. код]