Правильний трикутник
Рівносторонній трикутник — трикутник, усі сторони якого рівні. В Евклідовій геометрії всі три кути рівностороннього трикутника також рівні. Тому рівносторонні трикутники є правильними многокутниками і мають назву правильних. Усі кути правильного трикутника дорівнюють 60° (або ).
Властивості[ред. | ред. код]
Нехай сторона правильного трикутника дорівнює . Тоді:
- площа дорівнює ;
- периметр дорівнює ;
- радіус описаного кола дорівнює ;
- радіус вписаного кола дорівнює ;
- Висота трикутника дорівнює .
Усі ці формули можна вивести з теореми Піфагора.
Геометрична будова[ред. | ред. код]
Рівносторонній трикутник можна накреслити за допомогою циркуля та лінійки. Для цього необхідно виконати такі дії:
- Провести пряму та поставити на неї циркуль гострим кінцем;
- Провести коло;
- Поставити циркуль в одну із точок перетину кола та прямої, провести ще одне коло такого ж радіусу;
- З'єднати прямими центри кіл та точку перетину цих кіл.
Альтернативний спосіб:
- Накреслити коло довільного радіусу;
- Поставити циркуль на це коло і накреслити ще одне коло такого ж радіусу;
- Ці два кола перетинаються в двох точках, кожна з точок перетину разом із центрами кіл утворюють правильні трикутники.
Див. також[ред. | ред. код]
Джерела[ред. | ред. код]
- Бевз Г. П. Геометрія трикутника. — К.: Генеза, 2005. —120 с.: іл. — ISBN 966-504491-1
|
Основні опуклі правильні й однорідні політопи в розмірностях 2-10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Родина | An | Bn | I₂(p) / Dn | E₆ / E₇ / E₈ / F₄ / G₂ | Hn | |||||||
Правильний многокутник | Правильний трикутник | Квадрат | p-кутник | Правильний шестикутник | Правильный п'ятикутник | |||||||
Однорідний многогранник | Правильний тетраедр | Правильний октаедр • Куб | Півкуб | Правильний додекаедр • Правильний ікосаедр | ||||||||
Однорідний 4-політоп | П'ятикомірник | 16-комірник • Тесеракт | Півтесеракт | 24-комірник | 120-комірник • 600-комірник | |||||||
Однорідний 5-політоп | Правильний 5-симплекс | 5-ортоплекс • 5-гіперкуб | 5-півгіперкуб | |||||||||
Однорідний 6-політоп | Правильний 6-симплекс | 6-ортоплекс • 6-гіперкуб | 6-півгіперкуб | 122 • 221 | ||||||||
Однорідний 7-політоп | Правильний 7-симплекс | 7-ортоплекс • 7-гіперкуб | 7-півгіперкуб | 132 • 231 • 321 | ||||||||
Однорідний 8-політоп | Правильний 8-симплекс | 8-ортоплекс • 8-гіперкуб | 8-півгіперкуб | 142 • 241 • 421 | ||||||||
Однорідний 9-політоп | Правильний 9-симплекс | 9-ортоплекс • 9-гіперкуб | 9-півгіперкуб | |||||||||
Однорідний 10-політоп | Правильний 10-симплекс | 10-ортоплекс • 10-гіперкуб | 10-півгіперкуб | |||||||||
Однорідний n-політоп | Правильный n-симплекс | n-ортоплекс • n-гіперкуб | n-півгіперкуб | 1k2 • 2k1 • k21 | n-п'ятикутний многогранник | |||||||
Topics: Родини політопів • Правильні політопи • Список правильних політопів і з'єднань |