Нанотехнології

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Це пристрій передає енергію від нано-тонких шарів квантових ям нанокристалам над ними, змушуючи нанокристали випромінювати видиме світло.

Нанотехнологіями (рос. нанотехнологии, англ. nanotechnologies, нім. Nanotechnologien f pl), інша назва Наномолекулярні технології (від «нано» — К. Ерік Дрекслер, 1977) — в широкому значенні слова прийнято називати міждисциплінарну область фундаментальної і прикладної науки, в якій вивчаються закономірності фізичних і хімічних систем протяжністю порядку декількох нанометрів або часток нанометра (нанометр — це одна мільярдна частка метра або, що те ж саме, одна мільйонна частка міліметра - діаметр людської волосини становить близько 80 тис. нанометрів).

Нанотехнології, нанонауки — це наука і технологія колоїдних систем, це колоїдна хімія, колоїдна фізика, молекулярна біологія, вся мікроелектроніка. Принципова відмінність колоїдних систем, до яких належать: хмари, кров людини, молекули ДНК і білків, транзистори, з яких складаються мікропроцесори, в тому, що поверхня таких частинок або величезних молекул в мільйони разів перевершує обсяг самих частинок. Такі частки займають проміжне положення між справжніми гомогенними розчинами, сплавами, і звичайними об'єктами макросвіту як то стіл, книга, пісок. Поведінка таких систем сильно відрізняється від поведінки істинних розчинів і розплавів і від об'єктів макросвіту завдяки високорозвиненій поверхні. Як правило такі ефекти починають відігравати значну роль тоді, коли розмір частинок лежить у діапазоні 1-100 нанометрів, звідси прийшло заміщення слова колоїдна фізика, хімія, біологія на нанонауки і нанотехнології, маючи на увазі розмір об'єктів, про які йде мова.

Вужче значення цього терміну прив'язує нанотехнології до розробки матеріалів, приладів та інших механічних і немеханічних пристроїв, в яких застосовуються подібні закономірності. Нанотехнології мають справу з процесами, які протікають в просторових областях нанометрових розмірів. Тобто нанотехнології можна означити як технології, основані на маніпуляції окремими атомами і молекулами для побудови структур із наперед заданими властивостями.

Визначення і термінологія[ред.ред. код]

Є думка, що у світі немає на сьогоднішній день стандарту, що таке нанотехнології, що таке нанопродукції. У Єврокомісії створена спеціальна група, якій дали два роки на те, щоб розробити класифікацію нанопродукції. Серед підходів до визначення поняття «нанотехнології» є наступні:

1. У Технічному комітеті ISO / ТК 229 під нанотехнологіями мається на увазі таке:

  • знання та управління процесами, як правило, в масштабі 1 нм, але не виключає масштаб менше 100 нм, в одному або більше вимірах, коли введення в дію розмірного ефекту (явища) приводить до можливості нових застосувань;
  • використання властивостей об'єктів і матеріалів у нанометровому масштабі, які відрізняються від властивостей вільних атомів або молекул, а також від об'ємних властивостей речовини, що складається з цих атомів або молекул, для створення досконаліших матеріалів, приладів, систем, що реалізують ці властивості.

2. Згідно з «Концепцією розвитку в Російській Федерації робіт в області нанотехнологій на період до 2010 року» (2004 р.) нанотехнологія визначається як сукупність методів і прийомів, що забезпечують можливість контрольованим чином створювати й модифікувати об'єкти, що включають компоненти з розмірами менше 100 нм, хоча б в одному вимірі, і в результаті цього отримати принципово нові якості, що дозволяють здійснювати їх інтеграцію в повноцінно функціонуючі системи більшого масштабу.

Практичний аспект нанотехнологій включає в себе виробництво пристроїв і їх компонентів, необхідних для створення, обробки і маніпуляції атомами, молекулами і наночастинками. Мається на увазі, що не обов'язково об'єкт повинен мати хоч одним лінійним розміром менше 100 нм — це можуть бути макрооб'єкти, атомарна структура яких контрольовано створюється з дозволом на рівні окремих атомів, або ж містять в собі нанооб'єктів. У ширшому сенсі цей термін охоплює також методи діагностики, характерології і досліджень таких об'єктів. Нанотехнології якісно відрізняються від традиційних дисциплін, оскільки на таких масштабах звичні, макроскопічні технології поводження з матерією часто непридатні, а мікроскопічні явища, зневажливо слабі на звичних масштабах, стають набагато значніше: властивості та взаємодії окремих атомів і молекул або агрегатів молекул (наприклад, сили Ван-дер-Ваальса), квантові ефекти.

Нанотехнології і особливо молекулярна технологія — нові, дуже мало досліджені дисципліни. Основні відкриття, що передбачаються в цій області, поки не зроблені. Тим не менше, проведені дослідження вже дають практичні результати. Використання в нанотехнології передових наукових досягнень дозволяє відносити її до високих технологій. Розвиток сучасної електроніки йде по шляху зменшення розмірів пристроїв. З іншого боку, класичні методи виробництва підходять до свого природного економічного та технологічного бар'єру, коли розмір пристрою зменшується ненабагато, зате економічні витрати зростають експоненціально. Нанотехнології — наступний логічний крок розвитку електроніки та інших наукоємних виробництв.

Властивості[ред.ред. код]

Властивості наносистем багато в чому відрізняються від властивостей крупніших об'єктів, що складаються з тих же самих атомів і молекул. Наприклад, наночастки платини набагато ефективніше очищають автомобільні вихлопи від токсичних забруднювачів, ніж звичні платинові каталізатори. Одношарові і багатошарові графітні циліндри нанометрової товщини, так звані вуглецеві нанотрубки, прекрасно проводять електрику і тому можуть стати заміною мідним дротам. Нанотрубки також дозволяють створювати композитні матеріали виняткової міцності і принципово нові напівпровідникові і оптоелектронні пристрої. На сучасному етапі нанотехнології використовують під час виробництва особливих сортів скла, на яких не осідає бруд (застосовується в автомобіле- і авіабудуванні), під час виробництва чорнил; для виробництва одягу, який неможливо забруднити і пом'яти і так далі.

Нанотехнології на перетині сфер життєдіяльності[ред.ред. код]

Нанотехнології розташовані на передньому краю різноманітних наукових, економічних та соціальних напрямків розвитку.

Медицина та нанобіотехнології[ред.ред. код]

В даний час вже є дослідні зразки наноконтейнерів для прицільної доставки ліків до уражених органів і нановипромінювачів для знищення злоякісних пухлин; для створення матеріалів, необхідних при лікуванні опіків і ран; у стоматології; у косметології.

За прогнозами журналу Scientific American, вже в найближчому майбутньому з'являться медичні пристрої розміром з поштову марку. Їх достатньо буде накласти на рану. Цей пристрій самостійно проведе аналіз крові, визначить, які медикаменти необхідно використовувати, і уприсне їх в кров.

Експерти Європейської комісії склали наступний перелік найважливіших на їхню думку розділів нанобіотехнологій на майбутні 15-20 років[1]:

  • прицільне постачання ліків;
  • молекулярна візуалізація;
  • косметика;
  • створення нових лікарських засобів;
  • методи діагностики;
  • хірургія, в тому числі трансплантація тканин та органів;
  • тканинна інженерія;
  • харчові технології;
  • геноміка і протеоміка;
  • молекулярні біосенсори;
  • інші розділи.

Електроніка та інформаційні технології[ред.ред. код]

Особливі надії на нанотехнології покладають фахівці у галузі електроніки і інформаційних технологій. У 1965 році можна було вмістити на одному чипі лише 30 транзисторів. У 1971 році — 2 тис. Нині один чип містить близько 40 млн транзисторів величиною 130—180 нанометрів, і з'явилися повідомлення, що вдалося створити транзистор розміром 90 нанометрів. Цей процес зробив складну електронну і комп'ютерну техніку доступною для більшості споживачів: у 1968 році один транзистор коштував у США $1, нині за ці гроші можна придбати 50 млн транзисторів.

У 1965 році Гордон Мур, фахівець у сфері фізичної хімії, зробив знамените передбачення, яке було названо «Закон Мура». «Закон Мура» проголошує, що число транзисторів на чипі буде подвоюватися кожні 18 місяців. Протягом декількох десятиріч цей прогноз доводив свою точність. Нині виробники комп'ютерних чипів зіштовхнулись із складностями мініатюризації: щоб підтверджувати «Закон Мура», потрібно, щоб транзистор був не більшим 9 нанометрів. За прогнозом Міжнародного Консорціуму Напівпровідникових Компаній, цей рівень розвитку технології буде досягнуто до 2016 року.

Військове призначення[ред.ред. код]

Військові дослідження у світі ведуться в шести основних сферах: технології створення і протидії «невидимості» (відомі літаки-невидимки, створені на основі технології stealth), енергетичні ресурси, системи (наприклад, які дозволяють автоматично лагодити пошкоджену поверхню танка або літака), що самостійно відновлюються, зв'язок, а також пристрої виявлення хімічних і біологічних забруднень. Передбачалося, що в 2008 році буде представлено перші бойові наномеханізми.

Екологія[ред.ред. код]

Нанотехнології здатні також стабілізувати екологічну обстановку. Нові види промисловості не вироблятимуть відходів, що отруюють планету, а нанороботи зможуть знищувати наслідки старих забруднень. Крім того, нанотехнології нині використовуються для фільтрації води і інших рідин.

Сільське господарство[ред.ред. код]

Нанотехнології здатні здійснити революцію в сільському господарстві. Молекулярні роботи можуть виробляти їжу, замінивши сільськогосподарські рослини і тварин. Наприклад, теоретично можливо виробляти молоко прямо з трави, минаючи проміжну ланку — корову.

Енергетика[ред.ред. код]

Завдяки нанотехнологіям вченим вдається домогтися все кращого поглинання сонячної енергії. Однією із прогресивних компаній, що здійснює дослідження у цій галузі, є Sandia National Laboratories. Її фотопоглинаючі плівки характеризуються на 20% кращим фотоелектричним ефектом, ніж сучасні сонячні елементи на основі кремнію.

На основі нанотехнологій американська компанія Engelhard створила щось на кшталт «молекулярних воріт», крізь які проходять молекули двоокису вуглецю, а більші молекули (метанові) залишаються в речовині. Практичне застосування це знаходить під час фільтрації двоокису вуглецю із природного газу, а також при створенні автомобільних каталізаторів.

Hydrocarbon Technologies, дочірня компанія відомої американської компанії Headwaters, розробила методику обробки вугілля за допомогою нанотехнологій на молекулярному рівні таким чином, щоб створити з нього екологічно чисте рідке пальне. Саме потреба в заміні нафти сприяла тому, що китайська компанія Shenua Group ще в 2002 році стала партнером американців, і почала застосовувати отримане штучне пальне замість мазуту. Нанометод NxCat?, створений на іншій дочірній компанії Nanokinetix, дозволяє наповнювачам автомобільних каталізаторів ловити летючі органічні залишки вихлопних газів. А компанія Nanoforce зробила ставку на використання нанокаталізаторів для очистки нафти та на технологію збору врожаю за допомогою натометоду Poly-Web — мікроскопічних водоростей, що використовуються для виробництва біоетанолу.

Світлові діоди належать до зовсім іншої області застосування нанотехнологій. Японська компанія Nichia є на сьогодні провідним виробником техніки освітлення на основі нанотехнологій. Їхні світлові діоди у багато разів ефективніші за звичайні лампочки. А якщо взяти до уваги, що 20% світової енергії витрачається на освітлення, стає зрозуміло — перехід від звичайних ламп на світлові діоди дозволить досить суттєво економити енергетичні ресурси.

Фундаментальні положення[ред.ред. код]

Нещодавно було з'ясовано, що закони тертя в макро- й наносвіті виявилися схожими.

Скануюча зондова мікроскопія[ред.ред. код]

Одним з методів, які використовуються для вивчення нанооб'єктів, є скануюча зондовая мікроскопія. У рамках скануючої зондової мікроскопії реалізовані як не оптичні, так і оптичні методики.

Дослідження властивостей поверхні за допомогою скануючого зондового мікроскопа (СЗМ) проводяться на повітрі при атмосферному тиску, у вакуумі й навіть у рідині. Різні СЗМ методики дозволяють вивчати як провідні, так і не провідні об'єкти. Крім того, СЗМ підтримує суміщення з іншими методами дослідження, наприклад з класичною оптичної мікроскопії і спектральними методами.

За допомогою скануючого зондового мікроскопа (СЗМ) можна не тільки побачити окремі атоми, але також вибірково впливати на них, зокрема, переміщати атоми по поверхні. Вченим вже вдалося створити двовимірні наноструктури на поверхні, використовуючи даний метод. Наприклад, в дослідницькому центрі компанії IBM, послідовно переміщаючи атоми ксенона на поверхні монокристала нікелю, співробітники змогли викласти три букви логотипу компанії, використовуючи 35 атомів ксенону.

При виконанні подібних маніпуляцій виникає ряд технічних труднощів. Зокрема, потрібно створення умов надвисокого вакууму (10−11 тор), необхідно охолоджувати підкладку і мікроскоп до наднизьких температур (4-10 К), поверхню підкладки повинна бути одна транзакція чистою і атомарно гладкою, для чого застосовуються спеціальні методи її приготування. Охолодження підкладки проводиться з метою зменшення поверхневої дифузії загрожених атомів, охолодження мікроскопа дозволяє позбутися від термодрейфа. Проте, в більшості випадків немає необхідності маніпулювати окремими атомами або наночастинками і достатньо звичайних лабораторних умов для вивчення об'єктів, що цікавлять.

Наночастки[ред.ред. код]

Сучасна тенденція до мініатюризації показала, що речовина може мати зовсім нові властивості, якщо взяти дуже маленьку частинку цієї речовини. Частинки розмірами від 1 до 100 нанометрів зазвичай називають «наночастинками». Так, наприклад, виявилося, що наночастки деяких матеріалів мають дуже хороші каталітичні і адсорбційні властивості. Інші матеріали показують дивовижні оптичні властивості, наприклад, надтонкі плівки органічних матеріалів застосовують для виробництва сонячних батарей. Такі батареї, хоч і мають порівняно низьку квантову ефективність, зате більш дешеві і можуть бути механічно гнучкими. Вдається домогтися взаємодії штучних наночасток з природними об'єктами нанорозмірів — білками, нуклеїновими кислотами і іншими. Ретельно очищені наночастинки можуть самовистроюватися в певні структури. Така структура містить строго впорядковані наночастинки і також часто проявляє незвичайні властивості.

Новітні досягнення[ред.ред. код]

Наноматеріали[ред.ред. код]

Матеріали, розроблені на основі наночасток з унікальними характеристиками, що випливають з мікроскопічних розмірів їх складових.

  • Вуглецеві нанотрубки — протяжні циліндричні структури діаметром від одного до декількох десятків нанометрів і завдовжки до декількох сантиметрів, що складаються з однієї або декількох згорнутих в трубку гексагональних графітових площин (графеном) і зазвичай закінчуються напівсферичної голівкою.
  • Фулерени — молекулярні сполуки, що належать класу аллотропних форм вуглецю (інші — алмаз, карбін і графіт) і які становлять опуклі замкнені багатогранники, складені з парного числа трьохкоординованих атомів вуглецю.
  • Графен — моношар атомів вуглецю, отриманий у жовтні 2004 року в Манчестерському університеті (The University Of Manchester). Графен можна використовувати, як детектор молекул (NO 2), що дозволяє детектувати прихід і відхід одиничних молекул. Графен має високу рухливість при кімнатній температурі, завдяки чому як тільки вирішать проблему формування забороненої зони цього напівметал, обговорюють графен як перспективний матеріал, який замінить кремній в інтегральних мікросхемах.
  • Нанокристали
  • Аерогель
  • Наноаккумулятори — на початку 2005 року компанія Altair Nanotechnologies (США) оголосила про створення інноваційного нанотехнологічного матеріалу для електродів літій-іонних акумуляторів. Акумулятори з Li 4 Ti 5 O 12 електродами мають час зарядки 10-15 хвилин. У лютому 2006 року компанія почала виробництво акумуляторів на своєму заводі в Індіані. У березні 2006 Altairnano і компанія Boshart Engineering уклали угоду про спільне створення електромобіля. У травні 2006 успішно завершилися випробування автомобільних наноаккумуляторов. У липні 2006 Altair Nanotechnologies отримала перше замовлення на поставку літій-іонних акумуляторів для електромобілів.
  • Самоочисні поверхні на основі ефекту лотоса.
  • Нанобетон.

Напрямки розвитку нанотехнологій[ред.ред. код]

Нанотехнології розвиваються за такими основними напрямами:

  • створення матеріалів з ексклюзивними, наперед заданими властивостями шляхом оперування окремими молекулами;
  • конструювання нанокомп'ютерів, які використовують замість звичайних мікросхем набори логічних елементів з окремих молекул;
  • збирання нанороботів — систем, що саморозмножуються і призначені для ведення будівництва на молекулярному рівні.

Інвестиційна діяльність[ред.ред. код]

Нанотехнології є однією із провідних сфер новітніх технологій, кількість інвестицій в яку збільшується із року в рік, на фоні зменшення обсягу інвестицій в інших сферах.

Консультативна Рада з проблем науки і технології при Президенті США (PRESIDENT'S Council of Advisors on Science and Technology) підготувала доповідь, у якій аналізується нинішній рівень розвитку нанотехнологій в США та в інших науковиробляючих країнах і оцінюються перспективи подальшого прогресу в цій новітній сфері наукових досліджень та технологічних розробок. У доповіді підкреслюється, що в наш час[Коли?] Сполучені Штати є світовим лідером у області нанотехнологій. На частку США припадає чверть світових інвестицій у цю сферу і не менше половини статей по нанотехнологіях, публікованих в найавторитетніших професійних журналах. Америка також лідирує за кількістю патентів, які присуджуються за нанотехнологічні розробки. В цілому американські фахівці тримають дві третини таких патентів, виданих останніми роками. У одному тільки 2003 році учені й інженери із США одержали близько 1 тис. нанотехнологічних патентів (свіжіших даних поки що немає).

Автори доповіді попереджають, що конкуренція у сфері нанотехнологій останніми роками загострилася і, безумовно, посилюватиметься і в осяжному майбутньому. Країни Євросоюзу, Японія і Китай в наш час[Коли?] щорічно виділяють на ці програми зі своїх бюджетів приблизно по $900 млн, що ненабагато менше американських федеральних витрат. Для порівняння, за даними організації Національна Ініціатива в області нанотехнології США (NATIONAL Nanotechnology Initiative), в 2002 році витрати всіх держав світу на ці цілі не перевищували $2 млрд. Сумарний рівень інвестицій приватних корпорацій з інших країн на ці цілі в наш час[Коли?] вже дещо перевищує аналогічні витрати американських компаній.

У грудні 2003 року Конгрес США прийняв особливий закон «Нанотехнологічні Дослідження і Розробки 21 сторіччя» (21st Century Nanotechnology Research and Development Act), яким передбачалося збільшення асигнувань на подібні проекти. У 2004 році з федерального бюджету США на розвиток нанотехнологій було виділено близько $1 млрд. 240 млн. (для порівняння, в 2001 році — $464 млн). Ці дослідження також активно фінансуються за рахунок бюджетів окремих штатів, які в цілому направили на ці цілі порядку $400 млн. Ще більше коштів витрачає американський бізнес — майже $2 млрд. П'ята частина цієї суми припадає на біотехнологічні фірми, стільки ж — на електронні, 18% — на хімічну промисловість, по 8% — на аерокосмічну індустрію і енергетику.

Володимир Путін у 2007 році заявив, що нанотехнології являють собою «локомотив глобального наукового прогресу», та призвав Держ-думу вжити заходів до скорішого прийняття законопроекту про цільове фінансування цього напряму, та підкреслив, що в його здійсненні повинні взяти участь академічні галузеві наукові заклади, а також приватні лабораторії російських корпорацій. Він призвав всі країни СНД приєднатися до цієї програми розвитку. 4 липня 2007 року в Росії був прийнятий федеральний закон «Про Російську корпорацію нанотехнологій».

Індустрія нанотехнологій[ред.ред. код]

У 2004 році світові інвестиції в сферу розробки нанотехнологій майже подвоїлися в порівнянні з 2003 роком і досягли $ 10 млрд. На частку приватних донорів — корпорацій і фондів — довелося приблизно $ 6.6 млрд інвестицій, на частку державних структур — близько $ 3.3 млрд. Світовими лідерами за загальним обсягом капіталовкладень у цій сфері стали Японія і США. Японія збільшила витрати на розробку нових нанотехнологій на 126% в порівнянні з 2003 роком (загальний обсяг інвестицій склав $ 4 млрд), США — на 122% ($ 3.4 млрд).

Ставлення суспільства до нанотехнологій[ред.ред. код]

Прогрес в області нанотехнологій викликав певний суспільний резонанс. Ставлення суспільства до нанотехнологій вивчалося ВЦВГД та європейської службою «Євробарометр». Ряд дослідників вказують на те, що негативне ставлення до нанотехнології у неспеціалістів може бути пов'язано з релігійністю, а також з-за побоювань, пов'язаних з токсичністю наноматеріалів. Особливо це актуально для широко розрекламованого колоїдного срібла, властивості і безпека якого знаходяться під великим питанням.

Примітки[ред.ред. код]

Див. також[ред.ред. код]

Література[ред.ред. код]

  • William Sims Bainbridge. Nanoconvergence: The Unity of Nanoscience, Biotechnology, Information Technology and Cognitive Science, June 27, 2007, Prentice Hall, ISBN 0-13-244643-X
  • Lynn E. Foster. Nanotechnology: Science, Innovation, and Opportunity. December 21, 2005, Prentice Hall, ISBN 0-13-192756-6
  • Hari Singh Nalwa. Encyclopedia of Nanoscience and Nanotechnology (10-Volume Set), American Scientific Publishers. 2004. — ISBN 1-58883-001-2
  • Akhlesh Lakhtakia (ed) (2004). The Handbook of Nanotechnology. Nanometer Structures: Theory, Modeling, and Simulation. SPIE Press, Bellingham, WA, USA. ISBN 0-8194-5186-X. 
  • Fei Wang & Akhlesh Lakhtakia (eds) (2006). Selected Papers on Nanotechnology—Theory & Modeling (Milestone Volume 182). SPIE Press, Bellingham, WA, USA. ISBN 0-8194-6354-X. 
  • Jumana Boussey, Georges Kamarinos, Laurent Montès (editors) (2003), Towards Nanotechnology, «Nano et Micro Technologies», Hermes Sciences Publ., Paris, ISBN 2-7462-0858-X.

Джерела[ред.ред. код]