Спейс Шаттл
Запуск Discovery | ||||
Призначення | пілотовані космічні польоти | |||
---|---|---|---|---|
Виробник |
United Space Alliance[en]; Alliant Techsystems (ТП прискорювачі); Martin Marietta (Паливний бак); Boeing (Орбітер) | |||
Країна | США | |||
вартість запуску () | 450 млн — 1,5 млрд дол. (2011)[1] (210 млрд дол. за весь проєкт[2]) | |||
Розміри | ||||
Висота | 56,1 м | |||
Діаметр | 8,7 м | |||
Маса | 2 030 000 кг | |||
Ступенів | 2 | |||
Вантаж | ||||
Вантаж на ННО |
27 500 кг | |||
Вантаж на МКС |
16 050 кг | |||
Вантаж на ГПО |
3 810 кг | |||
Вантаж на Землю з орбіти |
14 400 кг | |||
Споріднені ракети | ||||
Історія запусків | ||||
Статус | недіюча | |||
Космодроми |
Космічний центр імені Кеннеді, LC-39; Авіабаза Ванденберг, SLC-6 | |||
Всього запусків | 135 | |||
Успішних | 134 запуски, 133 приземлення | |||
Невдалих |
Челленджер (7 загиблих); Колумбія (7 загиблих) | |||
Перший запуск | 12 квітня 1981 року | |||
Останній запуск | 21 липня 2011 року | |||
Відомий вантаж | Спейслеб, Габбл (телескоп), Магеллан (космічний апарат), Комптон (обсерваторія), Чандра (телескоп) | |||
ступінь - Твердопаливні прискорювачі | ||||
Довжина | 45,46 м | |||
Діаметр | 3,71 м | |||
Повна маса | 590 000 кг | |||
Двигуни | ||||
Тяга | від 2 до 12 500 кН | |||
Питомий імпульс | 2,64 км/с або 269 с | |||
Тривалість горіння | 124 с | |||
Паливо | APCP, PBAN | |||
Перший ступінь - Орбітер плюс Паливний бак | ||||
Двигуни | 3 од. RS-25 на орбітері (рів. моря: 1860 кН, вакуум: 2279 кН) | |||
Тяга | рів. моря: 5'580 кН, вакуум: 6'837 кН | |||
Питомий імпульс | рів. моря: 366 с, вакуум: 452 с | |||
Паливо | рідкий водень/рідкий кисень |
«Спейс Шаттл»[3][4][5][a] (англ. Space Shuttle, або «Спейс Шатл»[6][7], також «Космічний човник»[8] або «Космічний човен»[9]) — система частково багаторазових низькоорбітальних космічних кораблів, яку з 1981 по 2011 рік експлуатувало Національне управління США з аеронавтики і дослідження космічного простору (НАСА) в рамках програми «Спейс Шаттл». Нині система виведена з експлуатації.
Космічні кораблі цього типу в українській мові називають спейс-шатл[10] або просто шатл[7][11]. Слід зауважити, що, згідно з Українським правописом 2019 року, у назві системи або програми «Спейс Шаттл» слово Шаттл, оскільки це власна назва, пишемо з великої літери і з подвоєною Т[12], а в назві типу космічного корабля, оскільки це загальна назва, — з маленької і з однією Т: шатл[13].
Офіційна назва системи — Space Transportation System[en] (STS, англ. «Космічна транспортна система»). Уперше вона згадується в плані 1969 року щодо розробки системи багаторазових космічних кораблів, складеному під керівництвом віцепрезидента США Спіро Агню. Це був єдиний пункт, який передбачав фінансування розробки, оскільки розробка теж згадуваного в плані «ядерного шатла» була скасована[14].
Перший із чотирьох орбітальних випробувальних польотів (STS-1) відбувся в 1981 році, а експлуатаційні польоти (STS-5) розпочалися в 1982 році. У період з 1981 по 2011 рік були побудовані п'ять повноцінних кораблів-носіїв «Спейс Шаттл», які здійснили 135 польотів. Вони стартували з Космічного центру імені Кеннеді у Флориді. Під час експлуатаційних місій шатли виводили на орбіту численні супутники, міжпланетні зонди, космічний телескоп «Габбл», обладнання для проведення наукових експериментів на орбіті, а також брали участь у програмі «Мир — Шаттл[en]» разом із Росією і в будівництві й обслуговуванні Міжнародної космічної станції (МКС). Загальна тривалість польотів шатлів склала 1323 дні[15].
«Спейс Шаттл» складався з орбітального апарата (Orbiter Vehicle, OV), обладнаного трьома головними двигунами RS-25 компанії Rocketdyne, пари твердопаливних ракетних прискорювачів (SRB) багаторазового використання та одноразового зовнішнього бака (ET), який містив рідкий водень і рідкий кисень. «Спейс Шаттл» запускався у вертикальному положенні, як звичайна ракета, з двома прискорювачами по боках, які працювали одночасно з трьома основними двигунами орбітального корабля, живлячись від зовнішнього бака. Прискорювачі скидалися до того, як апарат досягав орбіти, і далі шатл продовжував політ на своїх головних двигунах. Зовнішній бак скидався пізніше, після відключення головних двигунів і безпосередньо перед виходом на орбіту[en], який здійснювався за допомогою двох двигунів Системи орбітального маневрування[en] (OMS) орбітального апарата. Після завершення місії орбітальний апарат вмикав двигуни OMS, сходив з орбіти і входив в атмосферу. На етапі прольоту скрізь атмосферу орбітальний апарат захищався від надмірної температури за допомогою керамічних плиток системи термозахисту. Він планерував як орбітальний літак і сідав на злітно-посадковій смузі — як правило, на Посадковому майданчику для шатлів[en] у Космічному центрі імені Кеннеді у Флориді або на сухому озері Роджерс на авіабазі Едвардс у Каліфорнії. Якщо посадка відбувалася в Едвардсі, орбітальний корабель повертався до Космічного центру імені Кеннеді на «спині» літака Boeing 747, спеціально переобладнаного для перевезення шатлів.
Перший орбітальний корабель, «Ентерпрайз», був побудований у 1976 році. Його використовували для випробувань зближення й посадки[en] (ALT), але він не був призначений для виведення на орбіту. Спочатку було побудовано чотири повністю працездатних орбітальних кораблі: «Колумбія», «Челленджер», «Діскавері» та «Атлантіс». З них два були втрачені в результаті аварій під час польотів: у 1986 році сталася катастрофа шатла «Челленджер», а у 2003-му «Колумбія» загинула під час повернення з орбіти. Загалом загинуло 14 астронавтів. П'ятий діючий (і шостий загалом) орбітальний корабель «Індевор» був побудований у 1991 році на заміну «Челленджеру». Після STS-135, останнього польоту «Атлантіса», який відбувся 21 липня 2011 року в рамках програми «Спейс Шаттл», три вцілілі робочі кораблі були виведені з експлуатації, і аж до запуску місії Crew Dragon Demo-2 у травні 2020 року[16] США були змушені доставляти своїх астронавтів на МКС, купуючи місця на російських космічних кораблях «Союз».
Наприкінці 1930-х років німецький уряд розпочав проєкт Amerikabomber[en] — реалізацію ідеї Ойґена Зенґера та математикині Ірен Бредт, яка полягала у створенні крилатої ракети під назвою Silbervogel (нім. «срібний птах»)[17][18]. У 1950-х роках Повітряні сили США запропонували використовувати для виконання військових операцій, як-от розвідка, супутникові атаки та ураження зброєю класу «повітря — земля», багаторазовий пілотований планер.
Наприкінці 1950-х років Повітряні сили почали розробку частково багаторазового літака Boeing X-20 Dyna-Soar. Повітряні сили працювали над Dyna-Soar разом із з НАСА і в червні 1961 року розпочали підготовку шести пілотів. Через зростання вартості розробки і той факт, що пріоритетнішою вважалася програма «Джеміні», у грудні 1963 року програма розробки Dyna-Soar була скасована. На додаток до програми Dyna-Soar, у 1957 році Повітряні сили провели дослідження можливості багаторазового використання прискорювачів. Це стало основою для повітряно-космічного літака — повністю багаторазового космічного корабля, розробка якого який так і не просунулася далі початкової фази проєктування в 1962—1963 роках[19].
Починаючи з початку 1950-х років, НАСА і Повітряні сили США сумісно розробляли несні корпуси для випробування літаків, які створювали підіймальну силу фюзеляжем, а не крилами, і випробували літаки NASA M2-F1[en], Northrop M2-F2[en], Northrop M2-F3[en], Northrop HL-10[en], Martin Marietta X-24[en] та Martin Marietta X-24B. У рамках програми було протестовано їхні аеродинамічні характеристики. Згодом ці наробітки втілилися в конструкції космічного корабля «Спейс Шаттл», зокрема приземлення без двигунів з великої висоти і з високою швидкістю[20][21].
24 вересня 1966 року, коли проєктувальні роботи в рамках космічної програми «Аполлон» наближалися до завершення, НАСА і Повітряні сили опублікували спільне дослідження, у якому дійшли висновку, що для задоволення їхніх майбутніх потреб потрібен новий транспортний засіб і що найбільш економічно ефективним рішенням буде частково багаторазова система[14]. 10 серпня 1968 року керівник Управління пілотованих космічних польотів НАСА Джордж Мюллер[en] оприлюднив план створення шатла багаторазового використання[22]. 30 жовтня 1968 року НАСА опублікувало запит на пропозицію (RFP) щодо проєктування «об'єднаного апарата для запуску й посадки» (ILRV)[22][23]. Замість того, щоб віддавати весь контракт одному переможцю на основі початкових пропозицій, НАСА оголосило про поетапний підхід до укладання контрактів і розробки «космічного човна»:
- Фаза А — запит на дослідження, виконані конкуруючими аерокосмічними компаніями.
- Фаза В — змагання між двома підрядниками за конкретний контракт.
- Фаза С — проєктування деталей компонентів космічного човна.
- Фаза D — виробництво космічного човна[24][25].
Щоб визначити оптимальну конструкцію багаторазового космічного корабля, у грудні 1968 року НАСА створило Робочу групу з розробки космічного човна (Space Shuttle Task Group) і уклало контракти на проведення досліджень із компаніями General Dynamics, Lockheed, McDonnell Douglas і North American Rockwell. У липні 1969 року Робоча група з розробки космічних човнів опублікувала звіт, у якому зазначалося, що «Шаттл» буде здатен здійснювати короткочасні пілотовані місії та підтримувати роботу космічної станції, а також матиме можливості із запуску, обслуговування й повернення супутників. У звіті також було визначено три класи майбутніх багаторазових шатлів:
- Клас I являв собою багаторазовий орбітальний корабель, встановлений на одноразових прискорювачах.
- Клас II мав використовувати кілька одноразових ракетних двигунів і один бак із паливом (півтора ступеня).
- Клас III — багаторазовий орбітальний корабель із багаторазовим прискорювачем.
У вересні 1969 року Космічна цільова група під керівництвом віцепрезидента США Спіро Агню опублікувала звіт, у якому закликала розпочати розробку космічного човна для доставки людей і вантажів на низьку навколоземну орбіту (ННО), розгінного блока для переміщення між навколоземними й навколомісячними орбітами, а також багаторазового ядерного розгінного блоку для далеких космічних польотів[26][27].
Після оприлюднення звіту робочої групи з розробки багаторазових космічних кораблів чимало аерокосмічних інженерів віддали перевагу повністю багаторазовій конструкції Класу III з огляду передбачувану економію витрат на обладнання. Максим Фаже[en], інженер НАСА, який працював над розробкою капсули для космічної програми «Меркурій», запатентував проєкт двоступеневої повністю відновлюваної системи з прямокрилим орбітальним апаратом, встановлюваним на більшому прямокрилому прискорювачі[28][29]. Лабораторія динаміки польоту Повітряних сил (Air Force Flight Dynamics Laboratory) стверджувала, що прямокрила конструкція не витримає високих теплових та аеродинамічних навантажень під час входу в атмосферу і не забезпечить необхідної дальності польоту. Крім того, Повітряні сили вимагали більшої вантажопідйомності, ніж передбачала конструкція, запропонована Фаже. У січні 1971 року керівництво НАСА і Повітряні сили вирішили, що оптимальною конструкцією для «Спейс Шаттла» буде багаторазовий орбітальний корабель з дельтаподібним крилом, встановлений на одноразовий бак із паливом[30].
Визначивши потребу в багаторазовому космічному кораблі великої вантажопідйомності, НАСА і Повітряні сили сформулювали вимоги до конструкції для своїх відповідних служб. Повітряні сили планували запускати за допомогою «Спейс Шаттла» важкі супутники і тому вимагали, щоб він був здатний виводити 29 000 кг на низьку навколоземну орбіту, якщо запуск здійснюється в східному напрямку, або 18 000 кг — на полярну орбіту. Проєкти супутників вимагали також, щоб шатл мав відсік для корисного вантажу розміром 4,6 на 18 м. НАСА оцінило двигуни F-1 і J-2 ракет «Сатурн» і визначило, що вони не відповідають вимогам програми «Спейс Шаттл»; у липні 1971 року НАСА уклало з компанією Rocketdyne контракт на початок розробки двигуна RS-25[31].
НАСА розглянуло 29 потенційних конструкцій космічних човнів і вирішило, що слід зупинитися на конструкції з двома бічними прискорювачами, а самі прискорювачі повинні бути багаторазовими, щоб зменшити витрати. НАСА і Повітряні сили вирішили використовувати ракети-носії із твердопаливними ракетними двигунами, оскільки вони дешевші і їх легше переобладнати для повторного використання після приводнення в океані. У січні 1972 року президент Річард Ніксон схвалив проєкт «Спейс Шаттл», а в березні НАСА ухвалило рішення про його остаточну конструкцію. Відповідальність за розробку головного двигуна «Спейс Шаттл» (SSME) покладалася на компанію Rocketdyne. У квітні 1971 року оновлені специфікації SSME були представлені Rocketdyne, а в липні того ж року був опублікований контракт[32]. У серпні того ж року НАСА віддало контракт на будівництво орбітального корабля компанії North American Rockwell. У серпні 1973 року контракт на зовнішній бак отримала компанія Martin Marietta, а в листопаді контракт на твердопаливний прискорювач відійшов компанії Morton Thiokol[33].
4 червня 1974 року компанія Rockwell розпочала будувати перший орбітальний корабель із номером OV-101, названий спершу «Конституція», але пізніше перейменований на «Ентерпрайз». Він призначався для випробувань і тому не мав двигунів і теплозахисту. Будівництво було завершено 17 вересня 1976 року, після чого «Ентерпрайз» перевезли на авіабазу Едвардс для випробувань[34].
Rockwell сконструювала Стенд для випробування основних двигунів шатлів[en] (MPTA-098), який являв собою структурну ферму, змонтовану на бічному прискорювачі з трьома приєднаними двигунами RS-25. У Національній лабораторії космічних технологій (NSTL) «Ентерпрайз» пройшов випробування, які мали підтвердити, що його двигуни здатні безпечно пройти всю процедуру запуску[35]. Щоб визначити вплив аеродинамічних і термічних навантажень під час запуску та входу в атмосферу, компанія Rockwell провела механічні й термічні перевірки на Стенді для випробування на міцність (STA-099)[35].
Початок розробки RS-25, багаторазового головного двигуна космічного шатла з дроселюванням, затримався на дев'ять місяців, упродовж яких компанія Pratt & Whitney оскаржувала контракт, виданий компанії Rocketdyne. Виробництво першого двигуна було завершено в березні 1975 року після роз'язання всіх проблем із його розробкою. Під час випробувань RS-25 зазнав численних відмов сопел, крім того, зламалися лопатки турбіни[en]. Попри проблеми під час випробувань, у травні 1978 року НАСА замовило дев'ять двигунів RS-25 для трьох орбітальних кораблів, що будувалися[36].
Значними затримками супроводжувалася розробка Системи теплового захисту космічних шатлів. У попередніх космічних кораблях НАСА використовувалися абляційні теплозахисні екрани, але вони не допускали повторного використання. НАСА вирішило використовувати для теплового захисту керамічні плитки: завдяки ним шатл можна було побудувати з легкого алюмінію, а плитки за потреби заміняти окремо. 27 березня 1975 року розпочалося будівництво «Колумбії», а 25 березня 1979 року шатл був доставлений у Космічний центр імені Кеннеді (KSC)[3]. На момент його прибуття залишалося встановити ще 6000 з 30 000 плиток. Однак багато з тих, встановлених раніше, довелося замінити; на це пішло ще два роки монтажу, перш ніж «Колумбія» змогла злетіти[25].
5 січня 1979 року НАСА ввело в експлуатацію другий орбітальний апарат. Пізніше того ж місяця компанія Rockwell почала перетворювати STA-099 на OV-099; пізніше цей шатл дістав назву «Челленджер». 29 січня 1979 року НАСА замовило ще два орбітальних апарати, OV-103 і OV-104, які дістали назви «Діскавері» та «Атлантіс». У лютому 1982 року почалося будівництво OV-105, пізніше названого «Індевор», але в 1983 році НАСА вирішило обмежити флот шатлів чотирма орбітальними кораблями. Однак у вересні 1987 року, після катастрофи «Челленджера», НАСА відновило виробництво «Індевора»[37].
Після прибуття на авіабазу Едвардс «Ентерпрайз» пройшов льотні випробування на літаку-носії шаттлів — Boeing 747, спеціально переобладнаному для перевезення орбітальних кораблів. У лютому 1977 року «Ентерпрайз» розпочав випробування із заходження на посадку та приземлення[en] (ALT): він пройшов випробування без відділення, під час яких він залишався прикріпленим до літака впродовж усього польоту. 12 серпня 1977 року «Ентерпрайз» провів своє перше випробування в режимі планерування, під час якого відокремився від літака-носія і приземлився на авіабазі Едвардс[39]. 13 березня 1978 року, після чотирьох додаткових польотів, «Ентерпрайз» перевезли до Центру космічних польотів імені Маршалла (MSFC). «Ентерпрайз» пройшов вібровипробування в рамках наземного тесту на вертикальну вібрацію: шатл, прикріплений до зовнішнього бака і твердопаливних ракетних прискорювачів, піддали вібрації, яка імітувала навантаження під час запуску[40]. У квітні 1979 року «Ентерпрайз» доставили в Космічний центр імені Кеннеді (KSC), де до нього приєднали зовнішній бак і твердопаливні прискорювачі, і перемістили на стартовий майданчик LC-39. Після встановлення шатла на стартовому майданчику було здійснено перевірки правильності позиціонування обладнання стартового комплексу. У серпні 1979 року «Ентерпрайз» повернули до Каліфорнії, де використовували для побудови Стартового комплексу № 6 авіабази Повітряних сил Ванденберг[37].
24 листопада 1980 року «Колумбію» з'єднали із зовнішнім баком і твердопаливними прискорювачами, а 29 грудня — перемістили на стартовий майданчик LC-39[41]. Її перший політ, STS-1, став першим випадком, коли НАСА здійснила перший політ космічного корабля, який ще не літав у космос, був пілотованим[42][41]. 12 квітня 1981 року відбувся перший запуск космічного корабля «Спейс Шаттл», який пілотували Джон Янг і Роберт Кріппен. Під час дводенної місії вони протестували обладнання на борту шатла і виявили, що від верхньої частини «Колумбії» відпали кілька керамічних плиток[43]. НАСА у співпраці з Повітряними силами зробило супутникові фотографії нижньої частини «Колумбії» і визначило, що пошкоджень не було[43]. 14 квітня «Колумбія» увійшла в атмосферу і приземлилася на авіабазі Едвардс[41].
У 1981 і 1982 роках НАСА провело три додаткові випробувальні польоти «Колумбії». 4 липня 1982 року місія STS-4, пілотований Кеном Маттінглі та Генрі Гартсфілдом, приземлився на бетонну злітно-посадкову смугу на авіабазі Едвардс. Президент США Рональд Рейган і його дружина Ненсі зустріли екіпаж і виголосили промову. Після STS-4 НАСА оголосило, що Космічна транспортна система[en] (STS) введена в експлуатацію[44].
«Спейс Шаттл» був першим діючим орбітальним космічним кораблем, призначеним для багаторазового використання. Кожен орбітальний корабель «Спейс Шаттл» був розрахований на 100 запусків або десять років експлуатації; пізніше цей термін був продовжений[45]. Під час запуску він складався з орбітального корабля, який ніс екіпаж[en] і корисний вантаж, зовнішнього бака і двох твердопаливних прискорювачів[46].
Відповідальність за компоненти шатлів була розподілена між кількома випробувальними центрами НАСА[47]:
- Космічний центр імені Кеннеді відповідав за запуск, посадку і розворот на екваторіальних орбітах (це фактично єдиний профіль орбіти, який використовувався в програмі).
- Повітряні сили США на авіабазі Ванденберг відповідали за запуск, посадку і розворот на полярних орбітах (хоча вони жодного разу не використовувалися).
- Космічний центр імені Джонсона слугував центральним пунктом для всіх операцій, пов'язаних із шатлами.
- Центр космічних польотів імені Маршалла відповідав за головні двигуни, зовнішній бак і твердопаливні прискорювачі.
- Космічний центр імені Джона Стенніса проводив випробування головних двигунів.
- Центр космічних польотів імені Ґоддарда керував глобальною мережею стеження.
Орбітальний корабель мав конструктивні елементи і можливості як ракети, так і літака, що давало йому змогу злітати вертикально, а приземлятися як планер[48]. Його фюзеляж складався з трьох частин: кабіна екіпажу, вантажного відсіку, двигунів; до нього кріпилися польотні поверхні. У задній частині орбітального корабля містилися головні двигуни «Спейс Шаттл» (SSME), які забезпечували тягу під час запуску, а також Система орбітального маневрування[en] (OMS), за допомогою якої орбітальний корабель виходив на орбіту, маневрував на ній та сходив з неї, коли перебував у космосі. Його подвійні дельтаподібні крила мали довжину 18 м і були розгорнуті на 81° по внутрішній передній кромці і на 45° по зовнішній передній кромці. Кожне крило мало внутрішній і зовнішній елевони, які забезпечували керування польотом під час входу в атмосферу, а також закрилки, розташовані між крилами, під двигунами, для керування кутом нахилу. Вертикальний стабілізатор орбітального корабля був відхилений назад на 45° і містив кермо, яке було здатне розділятися і діяти як аеродинамічне гальмо[en]. Вертикальний стабілізатор містив також двокомпонентну парашутну систему для гальмування[en] орбітального корабля після приземлення. В орбітальному кораблі використовувалося висувне шасі: одне носове і два основні, кожне на двох шинах. Основні шасі містили по дві гальмівні установки, а носове — електрогідравлічний рульовий механізм[48].
Екіпажі «Спейс Шаттлів» були різні залежно від місії. Щоб відповідати кваліфікаційним вимогам до своїх ролей, члени екіпажів проходили суворі тестування й тренування. Їх поділяли на три на три категорії:
- пілоти
- спеціалісти місії
- спеціалісти з корисного вантажу.
Пілоти поділялися на дві ролі: командири космічних кораблів і пілоти космічних кораблів[49]. У випробувальних польотах брали участь лише два члени екіпажу, командир і пілот; це були кваліфіковані пілоти, здатні підняти й посадити орбітальний корабель. Операції на орбіті, як-от експерименти, розгортання корисного вантажу і виходи у відкритий космос, проводили переважно спеціалісти місії, спеціально підготовлені для виконання запланованих місій і роботи з відповідними системами. На початку програми «Спейс Шаттл» НАСА відправляло в польоти спеціалістів із корисного вантажу — як правило, вони були системними спеціалістами, які працювали на компанію, що оплачувала розгортання корисного вантажу або операції з його виведення на орбіту. Останній спеціаліст із корисного вантажу, Грегорі Джарвіс, літав на STS-51-L, а в подальших місіях астронавти, які не були пілотами, призначалися спеціалістами місії. На STS-51-C і STS-51-J один астронавт летів як бортінженер, виконуючи функції військового представника корисного вантажу Національного розвідувального управління США. Екіпаж «Спейс Шаттла» зазвичай складався із семи астронавтів, але в одній із місій, STS-61-A, — з восьми[41].
Відсік екіпажу складався з трьох палуб і був герметичною, придатною для проживання зоною на всіх місіях «Спейс Шаттл». Льотна палуба складалася з двох місць для командира і пілота, а також додаткових місць для членів екіпажу (від двох до чотирьох). Середня палуба розташовувалася під польотною палубою, де були встановлені кухня і спальні місця екіпажу, а також три-чотири сидіння для членів екіпажу. На середній палубі містився шлюзовий відсік, який підтримував двох астронавтів під час виходів у відкритий космос, а також забезпечував доступ до герметичних дослідних модулів. Під середньою палубою розташовувався відсік для обладнання, у якому зберігалися системи контролю навколишнього середовища та утилізації відходів[37].
У перших чотирьох польотах, під час підйому і спуску, астронавти шатлів вдягали модифіковані висотні костюми повного тиску, які використовувалися Повітряними силами США і були обладнані шоломом повного тиску. Починаючи з 5-го польоту, STS-5, і аж до катастрофи «Челленджера» у 1986 році екіпаж вдягав цільні світло-блакитні скафандри з номексу і шоломи часткового тиску. Після катастрофи «Челленджера» члени екіпажу вдягали так звані «костюми для злету й посадки» (LES) — висотні скафандри під частковим тиском із шоломом. У 1994 році LES був замінений на повнотисковий «Удосконалений рятувальний костюм для екіпажу[en]» (ACES), який підвищив безпеку астронавтів на випадок аварійних ситуацій. На шатлі «Колумбія» для випробувань зближення й посадки[en] і перших чотирьох місій використовували крісла для катапультування на нульовій швидкості й висоті від надзвукового літака-розвідника Lockheed SR-71 Blackbird; після місії STS-4 їх не використовували, а після STS-9 зняли з шатла[48].
Кабіна екіпажу, яка була верхнім рівнем відсіку екіпажу, містила органи управління польотом орбітального корабля. Командир сидів на передньому лівому сидінні, пілот — на передньому правому; крім того, у кабіні було від двох до чотирьох додаткових сидінь для інших членів екіпажу. Приладові панелі містили понад 2100 дисплеїв і елементів керування, а командир і пілот використовували головний дисплей (HUD) і ручку керування орієнтацією (RHC) для належного просторового позиціонування двигунів під час їх роботи й керування орбітальним апаратом під час польоту по інерції. Обидва крісла були також обладнані органами керування рулями, що давало змогу повертати їх у польоті та керувати носовими колесами на землі[48]. На орбітальних апаратах спочатку встановлювали багатофункціональну систему відображення інформації та контролю польотної на основі електронно-променевих трубок (MCDS). Ця система відображала польотну інформацію на місцях командира, пілота і на кормовому сидінні, а також виводила дані на головний дисплей. У 1998 році «Атлантіс» модернізували й встановили на ньому багатофункціональну систему електронних дисплеїв (MEDS): у скляній кабіні пілотів 8 дисплеїв MCDS замінили на 11 багатофункціональних кольорових цифрових екранів. Уперше система MEDS була використана в травні 2000 року на STS-101, згодом її встановили також на інших орбітальних апаратах. У кормовій частині кабіни екіпажу були ілюмінатори, які виходили у відсік корисного вантажу, а також пульт керування «Канадармом» — системою дистанційного керування маніпулятором під час операцій із вантажем. Крім того, у кормовій частині польотної палуби були встановлені монітори відеоспостереження для огляду вантажного відсіку[48].
Середня палуба містила приміщення для зберігання спорядження екіпажу, спальні місця, кухню, медичне обладнання та санітарні вузли. Екіпаж зберігав обладнання в модульних шафах, які можна було масштабувати залежно від потреб, а також у стаціонарних підлогових відсіках. На середній палубі був люк для входу і виходу під час перебування на Землі[41].
Атмосферний шлюз[en] — це механізм для переміщення між двома приміщеннями, атмосфери у яких мають різний склад або тиск. Кожний орбітальний корабель спочатку був оснащений внутрішнім шлюзом, який являв собою продовження середньої палуби. На «Діскавері», «Атлантісі» та «Індеворі» внутрішній шлюз встановлювали як зовнішній у відсіку корисного вантажу з метою спростити стикування з орбітальною станцією «Мир» та Міжнародною космічною станцією, а також зі стикувальною системою орбітального корабля[41]. Шлюзовий модуль може бути встановлений у середньому відсіку або з'єднаний з ним у відсіку корисного навантаження[50]. Маючи внутрішній об'єм у формі циліндра діаметром 1,60 м і довжиною 2,11 м, він може вмістити двох астронавтів у скафандрах. Він має два D-подібні люки завдовжки 1,02 м і завширшки 0,91 м[50].
Орбітальний апарат був оснащений авіонікою, яка надавала інформацію для управління ним під час польоту в атмосфері. Його комплект авіоніки містив:
- три системи посадки з мікрохвильовим скануючим променем (MSBLS);
- три гіроскопи;
- три тактичні аеронавігаційні системи[en] (TACAN);
- три акселерометри;
- два радіовисотоміри;
- два барометричні висотоміри[en];
- три покажчики просторового положення;
- два махметри[en];
- два транспондери режиму С.
Під час входження в атмосферу, як тільки швидкість орбітального корабля зменшувалася до 5 Махів, екіпаж розгортав два датчики повітряних даних. На орбітальному кораблі було встановлено три інерціальні вимірювальні пристрої (IMU), які використовувалися для наведення й навігації на всіх етапах польоту. Орбітальний корабель був обладнаний двома датчиками системи астроорієнтації[en], які передавали дані в інерційні вимірювальні пристрої під час перебування на орбіті. Вони розгорталися на орбіті і були здатні наводитися на зорі автоматично або вручну. У 1991 році НАСА почало модернізацію інерціальних вимірювальних пристроїв за допомогою інерціальної навігаційної системи (INS), яка надавала точнішу інформацію про місцеперебування орбітального корабля. У 1993 році НАСА вперше використало GPS-приймач у місії STS-51. У 1997 році компанія Honeywell почала розробку інтегрованої системи GPS/INS, яка мала замінити IMU, INS і TACAN і була вперше запущена в місії STS-118 у серпні 2007 року[48].
Перебуваючи на орбіті, екіпаж спілкувався переважно за допомогою однієї з чотирьох радіостанцій, які працювали в S-діапазоні й забезпечували як голосовий зв'язок, так і передавання даних. Дві радіостанції S-діапазону були приймачами-передавачами з фазовою модуляцією і могли передавати й приймати інформацію. Інші дві радіостанції S-діапазону були передавачами з частотною модуляцією і використовувалися для передавання даних до НАСА. Оскільки радіостанції S-діапазону працюють лише в межах прямої видимості, НАСА використовувало для зв'язку з орбітальним апаратом на всій його орбіті Супутникову систему відстеження й передавання даних[en] та наземні станції Мережі для відстеження космічних апаратів і збору даних[en]. Крім того, поза вантажним відсіком на орбітальному апараті було розгорнуто радіостанцію широкосмугового Ku-діапазону, яка теж допускала використання як радар для рандеву. Орбітальний апарат був також обладнаний двома радіостанціями УВЧ-діапазону для зв'язку з управлінням повітряним рухом та астронавтами, які здійснюють виходи у відкритий космос[48].
Роботу електричної системи керування польотом[en] «Спейс Шаттла» повністю визначав головний комп'ютер — Система обробки даних (DPS). Він керував системами управління польотом і двигунами орбітального корабля, а також зовнішнього бака й розгінного блока під час запуску.
Система DPS складалася з п'яти комп'ютерів загального призначення (GPC), двох модулів масової пам'яті на магнітній стрічці (MMU) і відповідних датчиків для моніторингу компонентів «Спейс Шаттла»[51]. Оригінальним комп'ютером GPC був AP-101B, розроблений компанією IBM, обладнаний окремим центральним процесором (ЦП) і процесором вводу/виводу (IOP), а також енергонезалежною твердотільною пам'яттю. З 1991 по 1993 рік комп'ютери орбітальних апаратів були модернізовані до AP-101S, що дало змогу покращити пам'ять і можливості обробки даних, а також зменшити об'єм і вагу комп'ютерів за рахунок об'єднання процесора та IOP в одному блоці.
У чотири комп'ютери було завантажено програмне забезпечення Primary Avionics Software System (PASS), яке було спеціально розроблене для «Спейс Шаттл» і забезпечувало управління на всіх етапах польоту. Під час злету, маневрування, входу в атмосферу і посадки чотири комп'ютери PASS функціонували ідентично, забезпечуючи чотирикратне дублювання, і взаємно перевіряли результати своїх розрахунків на наявність помилок. Якщо виникала програмна помилка, яка спричиняла помилкові звіти чотирьох комп'ютерів PASS, п'ятий комп'ютер запускав резервну систему управління польотом, яка використовувала іншу програму і могла автономно керувати «Спейс Шаттлом» під час злету, перебування на орбіті і входження в атмосферу, але не могла підтримувати всю місію. П'ять комп'ютерів розташовувалися в трьох окремих відсіках на середній палубі, щоб забезпечити резервування на випадок виходу з ладу вентилятора системи охолодження.
Коли орбітальний корабель досягав орбіти, екіпаж перемикав деякі функції комп'ютерів з наведення, навігації та управління (GNC) на управління системами (SM) і корисним вантажем (PL) для підтримки оперативної місії[51]. «Спейс Шаттл» не запускали, якщо його політ припадав на грудень-січень, оскільки в такому разі його програмне забезпечення потребувало перезавантаження комп'ютерів орбітального корабля при зміні номера року. У 2007 році інженери НАСА розробили рішення, яке дало змогу запускати «Спейс Шаттли» в будь-який час року[52].
Шатли зазвичай були обладнані портативним допоміжним комп'ютером загального призначення (PGSC), який міг працювати спільно з комп'ютерами та комунікаційним комплексом орбітального корабля, а також відстежувати наукові дані та дані корисного вантажу. У перших польотах програми використовували Grid Compass[en] — один із перших портативних комп'ютерів, як і PGSC, але в подальших місіях використовувалися ноутбуки Apple та Intel[51].
Вантажний відсік займав більшу частину фюзеляжу орбітального корабля і являв собою місце для корисного вантажу «Спейс Шаттла». Відсік мав довжину 18 м і ширину 4,6 м і міг вмістити вантажі циліндричної форми діаметром до 4,6 м. Дві двері відсіку для корисного вантажу по обидва боки відсіку відкидалися й забезпечували відносно герметичне ущільнення для захисту корисного вантажу від нагрівання під час злету і входу в атмосферу. Корисний вантаж кріпили у вантажному відсіку до точок кріплення на лонжеронах. Двері відсіку корисного вантажу виконували додаткову функцію радіаторів — відведення тепла від орбітального корабля: після виходу на орбіту вони відкривалися для відведення тепла [53].
Орбітальний апарат давав змогу використовувати різноманітні додаткові компоненти залежно від місії — зокрема, орбітальні лабораторії[54], прискорювачі для запуску корисного вантажу в космос[55], систему дистанційного маніпулювання (RMS)[56] і, за потреби, піддон орбітального апарата для подовжених польотів[en][57][58].
Для обмеження споживання палива під час стикування орбітального корабля з МКС розроблена Система передавання енергії від станції до шаттла (SSPTS), яка перетворювала й передавала енергію станції до орбітального корабля[59]. Система SSPTS була вперше використана в місії STS-118, а потім була встановлена на «Діскавері» й «Ендевор»[60].
Система дистанційного маніпулятора (RMS), відома також під назвою Канадарм, являла собою механічний маніпулятор, прикріплений до вантажного відсіку. Його можна було використовувати для захоплення корисного вантажу і маніпулювання ним, а також як рухому платформу для астронавтів, які здійснюють вихід у відкритий космос. Канадарм побудувала канадська компанія Spar Aerospace[en]. Ним керував астронавт, який перебував усередині польотної палуби орбітального корабля, дивлячись на нього через ілюмінатори і екрани замкненої системи телебачення. Канадарм мав шість ступенів вільності та шість шарнірних з'єднань, розташованих у трьох точках уздовж маніпулятора. Початкова версія Канадарма була здатна розгортати або витягувати корисний вантаж масою до 29 000 кг; модернізована версія була здатна оперувати вантажами масою до 270 000 кг[61].
Модуль «Спейслеб» — це фінансована європейськими країнами герметична лабораторія, яка містилася у відсіку корисного вантажу і давала змогу проводити наукові дослідження на орбіті. Модуль «Спейслеб» складався з двох сегментів завдовжки 2,7 м, встановлених у хвостовій частині відсіку корисного вантажу з метою підтримувати центр ваги під час польоту. Астронавти входили в модуль «Спейслеб» через тунель завдовжки 2,7 або 5,8 м, з'єднаний зі шлюзовим відсіком. Обладнання «Спейслеб» для експериментів, а також комп'ютерне й енергетичне обладнання зберігалося переважно на піддонах[62]. Обладнання «Спейслеб» використовувалося в 28 місіях до 1999 року для здійснення експериментів з астрономії, мікрогравітації, радіолокації та наук про життя. За допомогою апаратури «Спейслеб» здійснювалося також обслуговування космічного телескопа «Габбл» (HST) і поповнення запасів космічної станції. Модуль «Спейслеб» був випробуваний під час місій STS-2 і STS-3, а першої повноцінної робочою місією стала STS-9[63].
Три двигуни RS-25, відомі також як головні двигуни «Спейс Шаттл» (SSME), розташовувалися трикутником на кормовій частині фюзеляжу орбітального корабля. Під час злету їхні сопла могли відхилятися на ±10,5° по тангажу і ±8,5° по рисканню і тим самим керувати шатлом шляхом змінення напрямку тяги. Багаторазові двигуни з титанового сплаву були незалежною частиною орбітального корабля: між польотами їх можна було знімати й заміняти.
RS-25 — це кріогенний двигун зі ступінчастим циклом згоряння, який працював на рідкому кисні і рідкому водні. Тиск у камері, який при цьому досягався, перевищував тиск у двигунах будь-якої іншої ракети на рідкому паливі. Оригінальна головна камера згоряння працювала за максимального тиску 226,5 бар. Сопло двигуна мало висоту 287 см і внутрішній діаметр 229 см. Сопло охолоджували 1080 внутрішніх ліній, через які під час роботи двигуна проганяли рідкий водень; крім того, сопло було термічно захищене ізоляційним і абразивним матеріалом[64].
Двигуни RS-25 кілька разів удосконалювали, щоб підвищити їхню надійність і потужність. Компанія Rocketdyne визначила, що двигун здатний безпечно й надійно працювати за тяги на рівні 104 % від початково заданої. Щоб зберегти показники тяги двигуна відповідно до попередньої документації й програмного забезпечення, НАСА зберегло початково визначену тягу на рівні 100 %, але змусило RS-25 працювати з більшою тягою. Модернізовані версії RS-25 позначалися Block I і Block II. У 2001 році на двигунах версії Block II вдалося досягти рівня тяги 109 %, що дало змогу знизити тиск у камері з 226,5 до 207,5 бар, оскільки вони мали більшу площу горловини. Звичайний максимальний рівень тяги становив 104 %, а 106 % або 109 % використовувались для переривання місії[65].
Система орбітального маневрування (OMS) складалася з двох двигунів AJ10-190, встановлених у задній частині шатла, і балонів із пальним, які їх живили. Двигуни AJ10 працювали на суміші монометилгідразину[en] (ММГ) тетраоксиду азоту (N2O4). Балони містили максимум 2140 кг ММГ і 3526 кг тетраоксиду азоту. Двигуни Системи орбітального маневрування використовувалися після відключення маршового двигуна (MECO) для подальшого виведення шатла на орбіту. Під час польоту за допомогою них змінювали орбіту шатла, а також зводили його з орбіти для входження в атмосферу. Кожен двигун системи створював тягу 27 080 Н, а вся система була здатна забезпечити 305 м/с зміни швидкості[66].
На етапі входження в атмосферу орбітальний корабель захищала від нагрівання система теплового захисту (TPS) — термозахисний шар навколо орбітального корабля, який відводить зайве тепло. На відміну від попередніх американських космічних кораблів, у яких використовувалися абляційні теплові екрани, багаторазове використання орбітального корабля вимагало багаторазового тепловідбивного екрана. На етапі входження в атмосферу система теплового захисту зазнавала температур до 1600 °C, але повинна була утримувати температуру алюмінієвої обшивки орбітального корабля нижче 180 °C.
Система теплового захисту майже цілком складалася з плиток чотирьох типів. Головний обтічник і передні крайки крил зазнавали температур понад 1300 °C і були захищені армованими вуглець-вуглецевими плитками (RCC). У 1998 році було розроблено і встановлено товстіші плитки, які мали запобігати пошкодженням від мікрометеоритів і космічного сміття, а після катастрофи «Колумбії» вони були вдосконалені. Починаючи з місії STS-114, орбітальні кораблі були обладнані системою, яка виявляла удари по передніх крайках крил і попереджала екіпаж про всі потенційні пошкодження[67]. Уся нижня частина орбітального корабля, а також інші найгарячіші поверхні були захищені плитками високотемпературної поверхневої ізоляції багаторазового використання, виготовленими з кремнієвих волокон, покритих боросилікатним склом, які вловлювали тепло в повітряні кишені й перенаправляли його назовні. Верхню частину орбітального корабля вкривали плитками білої низькотемпературної поверхневої ізоляції багаторазового використання з аналогічним складом, які забезпечували захист при температурах нижче 650 °C. Двері відсіку корисного вантажу і частини верхніх поверхонь крила вкривали багаторазовою поверхневою ізоляцією «Номекс» або бета-тканиною[en], оскільки температура там не перевищувала 370 °C[68].
Зовнішній бак був найбільшою частиною «Спейс Шаттла». Він містив паливо для головних двигунів орбітального корабля, а також з'єднував орбітальний корабель із бічними прискорювачами. Зовнішній бак мав висоту 47 м і діаметр 8,4 м, і містив окремі резервуари для рідкого кисню і рідкого водню. Резервуар для рідкого кисню розташовувався в носовій частині зовнішнього бака і мав висоту 15 м. Резервуар із рідким воднем займав більшу частину зовнішнього бака і мав висоту 29 м. Зовнішній бак кріпився до орбітального корабля за допомогою двох панелей із трубопроводами, які містили п'ять паливних і два електричних роз'єми, а також за допомогою структурних кріплень у носовій і кормовій частинах. Ззовні зовнішній бак покривали помаранчевою піною, завдяки якій він був здатен витримувати високу температуру під час підйому[69]. Крім того, піна запобігала утворенню льоду, зумовленому низькою температурою кріогенного палива[70].
Зовнішній бак забезпечував паливом головні двигуни «Спейс Шаттл» від моменту зльоту і до відключення головного двигуна (моменту MECO). Зовнішній бак відокремлювався від орбітального корабля через 18 секунд після вимкнення двигунів і міг бути запущений автоматично або вручну. У момент відокремлення орбітальний корабель втягував свої пластини із роз'ємами, а з'єднувальні кабелі герметизувалися, запобігаючи потраплянню залишків пального в корабель. Після зрізання болтів, які з'єднували конструкційних кріплення, зовнішній бак відокремлювався від орбітального корабля. Під час відокремлення з носової частини випускався газоподібний кисень, зовнішній бак відводився вбік, починав вільне падіння балістичною траєкторією в Індійський або Тихий океан і врешті-решт розпадався, входячи в атмосферу. Зовнішній бак був єдиним з основних компонентів системи «Спейс Шаттл», який не підлягав повторному використанню[71].
У перших двох місіях, STS-1 і STS-2, на зовнішній бак наносили 270 кг білої вогнетривкої латексної фарби, яка захищала його від пошкодження ультрафіолетовим випромінюванням. Подальші дослідження показали, що помаранчева піна вже сама по собі забезпечує достатній захист, і починаючи з STS-3 зовнішній бак більше не покривали латексною фарбою[72]. Це дало змогу зменшити вагу бака на 4700 кг. Уперше полегшений бак (LWT) полетів у місії STS-6[73]. Вага полегшеного зовнішнього бака була зменшена за рахунок видалення компонентів водневого резервуара і зменшення товщини деяких панелей обшивки[74]. У 1998 році у рамках місії STS-91 уперше здійснив політ надлегкий зовнішній бак (SLWT). Він був зроблений з алюмінієво-літієвого сплаву 2195, який був на 40 % міцнішим і на 10 % менш щільним, ніж його попередник, алюмінієво-літієвий сплав 2219. Надлегкий зовнішній бак важив на 3400 кг менше, ніж полегшений, що дало «Спейс Шаттлу» змогу доставляти важкі елементи на орбіту МКС з великим нахилом[75].
Твердопаливні прискорювачі (SRB) забезпечували 71,4 % тяги «Спейс Шаттл» під час зльоту й підйому і мали найбільші твердопаливні двигуни, які коли-небудь злітали[76]. Кожен прискорювач був 45 м заввишки і 3,7 м завширшки, важив 68 000 кг мав сталеву зовнішню оболонку товщиною приблизно 13 мм. Прискорювач складався з корпуса, твердопаливного двигуна, носового обтічника і сопла. Більшу частину конструкції прискорювача становив твердопаливний двигун. Його корпус складався з 11 сталевих секцій, які утворювали чотири основні сегменти. У носовому обтічнику розміщувалися передні двигуни для відділення від шатла і парашутні системи, які використовувалися для уповільнення й приводнення. Сопла могли повертатися на 8°, що давало змогу керувати шатлом у польоті[77].
Спейс-шатл запускався у космос за допомогою ракет-носіїв, здійснював маневри на орбіті як космічний корабель і сідав як планер. Планувалося, що спейс-шатли будуть снувати, як човники, між навколоземною орбітою та Землею, доставляючи корисні вантажі в обох напрямках. Довжина спейс-шатла — 32,2 м, розмах крил — 23,8 м.
Усього з 1975 по 1991 було побудовано п'ять шатлів:
- «Колумбія» (згорів в атмосфері Землі при посадці у 2003 році)
- «Челленджер» (вибухнув на старті у 1986 році)
- «Діскавері» (Знято з експлуатації у 2011 році)
- «Атлантіс» (Знято з експлуатації у 2011 році, на чому програму човників було закрито)
- «Індевор» (Знято з експлуатації у 2011 році)
8 липня 2011 року спейс шатл «Атлантіс» здійснив свій останній політ STS-135.
При розробці передбачалося, що кожен із шатлів матиме змогу до 100 разів стартувати в космос. На практиці ж вони використовувались значно рідше.
Загальні витрати на програму до 2006 року склали $160 млрд американських доларів. До 2010 року було виконано 131 запуск. Середні витрати на один політ — $1,3 млрд американських доларів.
На травень 2010 року найбільше польотів — 39 — здійснив шатл «Діскавері».
За 30 років експлуатації п'ять шатлів здійснили 135 польотів. Загалом всі шатли здійснили 21 152 витка навколо Землі і пролетіли 872,7 млн км (542 398 878 миль). На шатлах в космос було піднято 1,6 тис. тонн (3,5 млн фунтів) корисних вантажів. 355 астронавтів і космонавтів літали на шатлах в космос.
Зовнішні відеофайли | |
---|---|
1. Як посадити «Спейс Шатл» … з космосу // Канал «Цікава наука» на YouTube, 9 жовтня 2020. |
- Перший старт шатла відбувся якраз в двадцяту річницю старту Гагаріна — 12 квітня 1981 року. Це був перший в історії світової космонавтики випадок польоту корабля нового типу відразу із екіпажем, без попередніх безпілотних запусків. Справа у тому, що шатл без людини на борту не міг приземлитися.
- ↑ Відповідно до §89 правопису української мови, подвоєні приголосні зберігаються у власних назвах, але не зберігаються у загальних назвах іншомовного походження.
- ↑ Mike Wall (5 липня 2011). Програма човників НАСА коштувала 209 мільярдів доларів — чи була вона того варта?. Space.com. Архів оригіналу за 14 лютого 2018. Процитовано 25 грудня 2017.(англ.)
- ↑ John M. Logsdon (6 липня 2011). Чи була програма Space Shuttle помилкою?. technologyreview.com. с. 2. Архів оригіналу за 16 жовтня 2015. Процитовано 25 грудня 2017.(англ.)
- ↑ а б Тридцять років реалізації програми «Спейс Шаттл» [Архівовано 12 лютого 2015 у Wayback Machine.] // Радіо «Свобода», 07.07.2011.
- ↑ Відмовившись від російських «Союзів», NASA зекономить по $12 млн на кожному астронавті [Архівовано 12 лютого 2015 у Wayback Machine.] // espresso.tv, 27.01.2015.
- ↑ Останній космічний політ 'Атлантіса' // BBC Ukrainian, 19.07.2011.
- ↑ NASA оголосила про початок випробувань нового багаторазового корабля Orion [Архівовано 12 лютого 2015 у Wayback Machine.] // УНН, 12.10.2014.
- ↑ а б НАСА призупиняє співпрацю з Роскосмосом через Крим // BBC Ukrainian, 03.04.2014.
- ↑ 2.1.4: Космічні апарати. LibreTexts - Ukrayinska (англ.). 26 жовтня 2022. Процитовано 15 серпня 2024.
- ↑ https://conference.nau.edu.ua/index.php/SUO/Confs_14/paper/viewFile/2214/1448
- ↑ Цікава наука (9 жовтня 2020), Як посадити "Спейс Шатл"... з космосу [Bret Copeland], процитовано 15 серпня 2024
- ↑ Прототип європейського шатлу готовий до старту [Архівовано 12 лютого 2015 у Wayback Machine.] // Перший національний, 10.02.2015.
- ↑ https://mon.gov.ua/storage/app/media/zagalna%20serednya/Pravopys.2019/ukr.pravopys-2019.pdf, § 128, п. 3.
- ↑ https://mon.gov.ua/storage/app/media/zagalna%20serednya/Pravopys.2019/ukr.pravopys-2019.pdf, § 128, п. 1.
- ↑ а б https://web.archive.org/web/20200531171908/https://history.nasa.gov/SP-4407/vol4/cover.pdf
- ↑ published, Tariq Malik (21 липня 2011). NASA's Space Shuttle By the Numbers: 30 Years of a Spaceflight Icon. Space.com (англ.). Процитовано 16 серпня 2024.
- ↑ Demo-2: Launching Into History - NASA (амер.). Процитовано 20 серпня 2024.
- ↑ published, Mike Wall (28 червня 2011). How the Space Shuttle Was Born. Space.com (англ.). Процитовано 21 серпня 2024.
- ↑ https://archive.org/details/riseofrocketgirl0000holt/page/237
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 21 серпня 2024.
- ↑ Reed, R. Dale; Lister, Darlene; Huntley, J. D. (1 січня 1997). Wingless Flight: The Lifting Body Story (англ.). ISBN 978-0-16-049390-4.
- ↑ Nasa Space Shuttle Owners Workshop Manual An Insi. goldpdf.site (EN) . Процитовано 22 серпня 2024.
- ↑ а б http://www.astronautix.com/data/8812shcf.pdf
- ↑ Шаттли. Програма Спейс Шаттл. zoo-vse.ru. Процитовано 23 серпня 2024.
- ↑ INTRODUCTION TO FUTURE LAUNCH VEHICLE PLANS [1963-2001]. www.pmview.com. Процитовано 23 серпня 2024.
- ↑ а б Nasa Space Shuttle Owners Workshop Manual An Insi. goldpdf.site (EN) . Процитовано 23 серпня 2024.
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 25 серпня 2024.
- ↑ Space Task Group Report, 1969. web.archive.org. 14 січня 2016. Процитовано 25 серпня 2024.
- ↑ Maxime A. Faget - NASA (амер.). 10 серпня 2015. Процитовано 26 серпня 2024.
- ↑ https://patentimages.storage.googleapis.com/eb/f9/60/879c61bb6df70a/US3702688.pdf
- ↑ https://www.nasa.gov/history/history-publications-and-resources/nasa-history-series/exploring-the-unknown/
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 27 серпня 2024.
- ↑ SPACE SHUTTLE PROGRAM HISTORY | Spaceline (амер.). Процитовано 29 серпня 2024.
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 29 серпня 2024.
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 30 серпня 2024.
- ↑ а б Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 1 вересня 2024.
- ↑ а б в Baker, David (April 2011). NASA Space Shuttle: Owners' Workshop Manual. Somerset, UK: Haynes Manual. ISBN 978-1-84425-866-6.
- ↑ STS-1 і STS-2 були єдиними місіями програми «Спейс Шаттл», у яких зовнішній бак вкривали білим вогнетривким покриттям. У подальших місіях з метою зменшення маси латексне покриття не використовувалося, і зовнішній бак став помаранчевим.
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 4 вересня 2024.
- ↑ This Week in NASA History: Space Shuttle Program’s First Mated Vertical Ground Vibration Test Performed at Marshall - Oct. 4, 1978 - NASA (амер.). Процитовано 4 вересня 2024.
- ↑ а б в г д е Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ 'Yeeeow!' and 'Doggone!' Are Shouted on Beaches as Crowds Watch Liftoff. archive.nytimes.com. Процитовано 5 вересня 2024.
- ↑ а б White, Rowland (2016). Into the Black. New York: Touchstone. ISBN 978-1-5011-2362-7.
- ↑ Exploring the Unknown - NASA (амер.). Процитовано 6 вересня 2024.
- ↑ Sivolella, Davide (9 червня 2017). The Space Shuttle Program: Technologies and Accomplishments (англ.). Springer. ISBN 978-3-319-54946-0.
- ↑ Jenkins, Dennis R. (2001). Space shuttle: the history of the National Space Transportation System: the first 100 missions (вид. 3rd ed). Cape Canaveral, Fla: D.R. Jenkins. ISBN 978-0-9633974-5-4. OCLC 46825711.
- ↑ Wayback Machine. web.archive.org. 19 вересня 2020. Процитовано 8 вересня 2024.
- ↑ а б в г д е ж Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Space Shuttle Astronaut Qualifications | Spaceline (амер.). Процитовано 11 вересня 2024.
- ↑ а б NASA Space Shuttle — Owners manual — Haynes
- ↑ а б в Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Baylor, Michael (23 вересня 2024). Content Use Policy. NASASpaceFlight.com (амер.). Процитовано 24 вересня 2024.
- ↑ Baker, David (April 2011). NASA Space Shuttle: Owners' Workshop Manual. Somerset, UK: Haynes Manual. ISBN 978-1-84425-866-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-40. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-304, 319. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-40 . Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-86. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ John F. Kennedy Space Center - Space Shuttle Facts and Statistics - Extended Duration Missions. web.archive.org. 23 червня 2006. Процитовано 27 вересня 2024.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-87–88. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, III-366–368 . Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, 434—435. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Spacelab joined diverse scientists and disciplines on 28 Shuttle missions | Science Mission Directorate. web.archive.org. 24 грудня 2018. Процитовано 29 вересня 2024.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-177-183 . Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Baker, David (April 2011). NASA Space Shuttle: Owners' Workshop Manual, 106—107. Somerset, UK: Haynes Manual. ISBN 978-1-84425-866-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II–80. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II–112–113. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, с. 395. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, 421—422. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ NASA: Polyurethane Foam used on Space Shuttle • Dura Foam Roofing. Dura Foam Roofing (амер.). 25 травня 2011. Процитовано 7 жовтня 2024.
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, 422. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Jenkins, Dennis R. (2016). Space Shuttle: Developing an Icon — 1972—2013, II-210. Specialty Press. ISBN 978-1-58007-249-6.
- ↑ https://web.archive.org/web/20170205100049/https://www.jsc.nasa.gov/history/reference/TM-2011-216142.pdf
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, 422. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, 423—424. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ https://web.archive.org/web/20130406193019/http://www.nasa.gov/returntoflight/system/system_SRB.html
- ↑ Jenkins, Dennis R. (2001). Space Shuttle: The History of the National Space Transportation System, 425—429. Voyageur Press. ISBN 978-0-9633974-5-4.
- ↑ https://ia801001.us.archive.org/17/items/DTIC_ADA170960/DTIC_ADA170960.pdf page 5.101
- NASA Human Spaceflight — Shuttle [Архівовано 6 листопада 2005 у Wayback Machine.]: Current status of shuttle missions
- Video of current and historical missions (STS-1 thru Current)
- NASA TV: View live streaming of launch and mission coverage
- [news: sci.space.shuttle Space Shuttle Newsgroup — sci.space.shuttle]
- List of all Shuttle Landing Sites [Архівовано 31 березня 2016 у Wayback Machine.]
- Map of Landing Sites [Архівовано 3 червня 2010 у Wayback Machine.]
- Official NASA Human Space Flight Orbital Tracking
[Архівовано 8 квітня 2007 у Wayback Machine.]
Це незавершена стаття про космос або космічний політ. Ви можете допомогти проєкту, виправивши або дописавши її. |