У математиціповерхне́вий інтегра́л — це визначений інтеграл, котрий береться по поверхні (яка може бути зігнутою множиною в просторі); його можна розглядати як подвійний інтегральний аналог лінійного інтегралу. З огляду на поверхні, можна інтегрувати скалярні поля (тобто функції, які повертають числа як значення) і векторні поля (тобто функції, які повертають вектори як значення).
Шмат поверхні, заданий у параметричні формі: , , , причому пробігають деяку область площини, називається гладким, якщо різні пари значень дають різні точки , часткові похідні функцій , , неперервні і завжди
де
Якщо поверхня складається з скінченного числа гладких кусків поверхні, то називається кусково гладкою.
Гладка поверхня називається двосторонньою, якщо при обході кожної замкнутої кривої на , виходячи з будь-якої точки на , повертаємося в початкове положення з напрямом нормалі, вибраним в . Обидві сторони двосторонньої поверхні можуть бути, таким чином, охарактеризовані напрямом відповідних нормалей. Односторонньою поверхнею є, наприклад, лист Мебіуса. Усюди надалі під поверхнею розуміється двостороння поверхня.
Нехай деяка функція визначена і обмежена на гладкій поверхні . Хай позначає деяке розбиття на скінченну кількість елементарних поверхонь (i = 1, 2 …. і) з площами , є найбільшим діаметром елементарних поверхонь і — довільна точка на відповідній елементарній поверхні (Рис. 1). Число
називається інтегральною сумою, що відповідає розбиттю .
Якщо існує число з такою властивістю: для кожного знайдеться таке, що для кожного розбиття з , незалежно від вибору точок , то називається поверхневим інтегралом 1-го роду від по поверхні і записується
.
Для окремого випадку підінтегрального виразу
число дає площу поверхні .
Обчислення (зведення до подвійного інтеграла): якщо поверхня задана параметрично:
, , ,
причому та пробігають область площини ,
.
Якщо поверхня задана явно рівнянням причому пробігають область , то
.
Аналогічні формули вірні, якщо представлена рівняннями виду чи .
Орієнтація двосторонньої незамкнутої поверхні: вибирається певна сторона поверхні ; на кожній замкнутій кривій на визначається додатний напрям обходу так, що він разом з нормаллю вибраної сторони утворював праву трійку векторів.
Нехай в точках поверхні , розташованої однозначно над площиною
і заданою явно рівнянням , визначена обмежена функцією . Нехай є розбиття поверхні на скінченну кількість елементарних поверхонь , , — найбільший діаметр елементарних поверхонь, — довільна точка, вибрана на елементарній поверхні . Якщо вибрана певна сторона поверхні і тим самим орієнтація по ній, то напрям обходу межі кожної елементарної поверхні визначає напрям обходу в площині , біля кордону проєкції . Площа цієї проєкції береться із знаком «+», якщо межа проєкції проходиться в додатному напрямі; інакше — із знаком «—» (Рис. 2).
Число
називається інтегральною сумою, що відповідає розбиттю . На противагу утворенню інтегральних сум поверхневих інтегралів 1-го роду, тут множиться не на площу (елементарній поверхні а на взяту із знаком площа проєкції поверхні на площину .
Якщо існує число з такою властивістю: для кожного знайдеться таке , що для кожного розбиття з , незалежно від вибору точок , завжди |, то називають поверхневим інтегралом 2-го роду від
за вибраною стороною і пишуть
.
Якщо не має взаємно однозначної проєкції на площину , але її можна розбити на скінченну кількість поверхонь, для кожної з яких існує така проєкція, то поверхневий інтеграл по визначається як сума інтегралів по окремих поверхнях.
Якщо має однозначну проєкцію на площину або , то можна визначити аналогічно два інших поверхневих інтеграла 2-го роду:
та
,
де у відповідних інтегральних сумах стоять площі проєкцій на площину або .
Нарешті, для трьох функцій , , , визначених на , ці інтеграли можна додати і визначити загальніший поверхневий інтеграл другого роду:
.
Обчислення поверхневого інтеграла 2-го роду (зведення до подвійного інтеграла)
1. Нехай поверхня має явне представлення , причому змінюються в області . Тоді поверхневий інтеграл по тій стороні , для якої кут між нормаллю і віссю є гострим, обчислюється так:
Якщо вибрана інша сторона поверхні, то
Аналогічні формули виходять для інших інтегралів:
де задана рівнянням , — проєкція на площину , а поверхневий інтеграл береться по тій стороні, нормаль до якої утворює з віссю гострий кут. Так само
де задана рівнянням , проєкція на площину , а поверхневий інтеграл береться по тій стороні, нормаль до якої складає з віссю у гострий кут.
2. Якщо поверхня задана в параметричній формі: , , , то
де
дивись рівняння угорі, додатний знак перед інтегралом справа використовується тоді, коли орієнтація області площини відповідає орієнтації вибраної сторони. Для суми трьох інтегралів отримуємо
Зв'язок між поверхневими інтегралами 1-го і 2-го роду
Якщо , , — кути нормалі до вибраної сторони поверхні з осями і , то
тобто поверхневий інтеграл 2-го роду, що стоїть зліва, перетвориться в поверхневий інтеграл 1-го роду, що стоїть справа.
Поверхневий інтеграл
має для різних незамкнутих поверхонь і з однією і тією ж границею у загальному випадку різні значення (Рис. 3), тобто він в загальному випадку не обертається в нуль на замкнутій поверхні (аналогічно залежності від шляху криволінійного інтеграла). Якщо функції
неперервні в однозв'язній просторовій області (тобто в області, яка разом з кожною замкнутою поверхнею містить також і область, обмежену цією поверхнею), то поверхневий інтеграл по всякій замкнутій поверхні в обертається в нуль тоді і тільки тоді, коли
Геометричні і фізичні застосування поверхневого інтеграла