Функції синус і косинус, що використовуються в тригонометрії, в математичному аналізі можна визначити як знакопереміжні ряди, попри те, що в елементарній алгебрі вони вводяться як відношення сторін прямокутного трикутника. Дійсно,
, та
Якщо з цих рядів вилучити закопереміжний коефіцієнт , то отримаємо гіперболічні функції і , що використовуються в математичному аналізі.
Для цілого чи додатного індексу функцію Бесселя першого роду можна визначити за допомогою закопереміжного ряду
Ознака Лейбніца — ознака збіжності знакопереміжного ряду, встановлена Готфрідом Лейбніцем. Формулювання теореми: нехай дано знакопереміжний ряд
,
для якого виконуються такі умови:
, починаючи з деякого номера (),
Тоді такий ряд збігається.
Зауваження
Ряди, що задовольняють ознаці Лейбніца, називаються рядами Лейбніца.
Слід зазначити, що монотонне спадання до нуля не є необхідним для збіжності знакопереміжного ряду (тоді як для довільного ряду умова є саме необхідною умовою): ця ознака є достатньою, але не обов'язковою (наприклад, ряд збігається).
З теореми Лейбніца випливає наслідок, який дозволяє оцінити похибку обчислення неповної суми ряду (залишок ряду):
Залишок збіжного знакопереміжного ряду буде за модулем меншим від першого відкинутого доданку:
Доведення
Послідовність монотонно зростає, оскільки а вираз невід'ємний за будь-якого цілого . Послідовність монотонно спадає, оскільки а вираз у дужках невід'ємний. Як вже доведено під час доведення самої теореми Лейбніца, в обох цих послідовностей — і — однакова границя при Так отримано і також Звідси і Отже, для будь-якого виконується , що й потрібно було довести.
Знакопереміжні ряди також іноді називають знакозмінними[1], проте цей термін може також означати будь-які ряди, які мають одночасно нескінченне число додатних і від'ємних членів.
Наведена вище оцінка не залежить від . Отже, якщо {} монотонно збігається до , то оцінка абсолютної похибки для наближення нескінченних сум частковими є такою:
Припустимо, що ряд абсолютно збіжний. Тоді, є збіжним, і з цього випливає, що також збіжний. Оскільки , тоді ряд є збіжним за ознакою порівняння рядів. Тому є збіжним як різниця двох збіжних рядів .
Для будь-якого ряду можна утворити новий ряд перестановкою порядку сумування. Ряд називається безумовно збіжним, якщо після будь-якої його перестановки утворюється ряд з тією ж збіжністю, що й початковий. Абсолютно збіжні ряди є безумовно збіжними. Але теорема Рімана про умовно збіжний ряд стверджує, що умовно збіжні ряди можна подати для утворення будь-якої збіжності.[2] Загальний принцип полягає в тому, що додавання нескінченних сум є комутативним лише для абсолютно збіжних рядів.
Наприклад, одне з хибних доведень, що , використовує порушення асоціативності для нескінченних сум.
Насправді числове підсумування знакопереміжного ряду можна прискорити за допомогою будь-якої з різноманітних методик прискорення збіжності рядів. Однією з найдавніших методик є підсумування Ейлера, а також безліч сучасних методик, які можуть забезпечити ще швидшу збіжність рядів.
Бронштейн И. Н., Семендяев К. А. Справочник по математике. — Изд. 7-е, стереотипное. — М. : Государственное издательство технико-теоретической литературы, 1967. — С. 296.