Диференціал (математика)

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Приріст та лінійна частина приросту функції однієї змінної

Диференціал в математиці — головна лінійна частина приросту функції або відображення.

Розділи в Математичному аналізі
Фундаментальна теорема
Границя функції
Неперервність
Теорема Лагранжа

В математичному аналізі диференціал традиційно вважається нескінченно малим приростом змінної. Наприклад, якщо x — змінна, тоді приріст значення x часто позначається Δx (чи δx, якщо цей приріст малий). Диференціал dx також є таким приростом, але нескінченно малим. Варто зазначити, що таке визначення не є математично строгим, але воно зручне для розуміння, також існує багато способів зробити визначення математично точнішим.

Головна властивість диференціалу: якщо y функція від x, тоді диференціал dy від y пов'язаний з dx формулою:

де dy/dx позначає похідну від y по змінній x. Ця формула підсумовує інтуїтивне твердження, що похідна y по змінній x це границя відношення приростів Δyx де Δx прямує до нуля.

  1. Диференціал як лінійне відображення. Цей підхід є основою визначення повної похідної і зовнішньої похідної в диференціальній геометрії.[1]
  2. Диференціал як нільпотентний елемент в комутативних кільцях. Такий підхід популярний в алгебраїчній геометрії.[2]

Ці підходи дуже різні, але їх об'єднує ідея кількісного, тобто важливо сказати, що диференціал не тільки нескінченно малий, а наскільки саме він малий.

Історія і використання[ред.ред. код]

Нескінченно малі величини грали значну роль в розвитку математичного аналізу. Архімед використовував їх, хоча він і не вірив, що твердження з нескінченно малими величинами можуть бути точні.[3] Бхаскара II розробив концепцію диференціального відображення нескінченно малих змін.[4] Шараф аль-Дін аль-Тусі використовував їх для обчислення похідної кубічного рівняння.[5][6] Ісаак Ньютон називав їх похідними. Проте Лейбніц був перший хто застосував термін диференціал до нескінченно малих величин, а також придумав позначення похідної, яке використовується дотепер.

В позначенні Лейбніца, якщо x — змінне число тоді dx позначає нескінченно малий приріст змінної x. Таким чином, якщо y функція від x, тоді похідна y по змінній x часто позначається , що також може бути записано (позначення Ньютона чи Лагранжа) чи . Використання диференціалів в такій формі спровокувало багато критики, наприклад знаменитий памфлет The Analyst єпископа Берклі. В будь-якому разі таке позначення залишилось популярним, тому що воно наочно відображає принцип, що похідна функції y(x) дорівнює нахилу функції в точці, що можна отримати, якщо обчислити границю відношення приросту y в залежності від приросту x, якщо приріст x прямує до нуля. Диференціали також застосовують в аналізі розмірності, де диференціал наприклад dx маю таку саму розмірність як і змінна x.

Диференціал використовують в позначенні інтеграла, тому що інтеграл можна вважати нескінченною сумою нескінченно малих величин: площа під графіком функції обчислюється як сума площ нескінченно тонких стрічок. У виразі

знак інтеграла (витягнуте s) означає нескінченну суму, f(x) позначає 'висоту' тонкої стрічки, а диференціал dx позначає нескінченно тонку ширину.

Формальні означення[ред.ред. код]

Випадок однієї змінної[ред.ред. код]

Нехай в околі точки задана функція .

нехай існує таке , що при .

Позначимо .

Тоді функція називається диференціалом функції в точці .

Випадок багатьох змінних[ред.ред. код]

Нехай в околі точки задана функція багатьох змінних .

Нехай існує такий вектор , що при , де добуток векторів є скалярним добутком.

Позначимо .

Тоді функція називатиметься диференціалом функції в точці .

Відображення між евклідовими просторами[ред.ред. код]

Також поняття диференціала можна ввести для відображення між евклідовими просторами ƒ Rn → Rm. Нехай xx ∈ Rn — два вектори в просторі Rn. Зміна значення функції ƒ при зміні аргументу на Δx рівна:

Якщо існує m × n матриця A для якої

де вектор ε → 0 при Δx → 0, тоді ƒ називається диференційовною в точці x. Матриця A називається матрицею Якобі, а лінійне перетворення, що ставить у відповідності вектору Δx ∈ Rn вектор AΔx ∈ Rm називається диференціалом (x) відображення ƒ в точці x.

Відображення між многовидами[ред.ред. код]

Диференціал в точці гладкого відображення із гладкого многовиду в многовид визначається як лінійне відображення між дотичними просторами в точках і тобто таке що для довільної гладкої в точці F(x) функції виконується рівність:

Примітки[ред.ред. код]

  1. Darling, R. W. R. (1994). Differential forms and connections. Cambridge, UK: Cambridge University Press. ISBN 0-521-46800-0. 
  2. Eisenbud, David; Harris, Joe (1998). The Geometry of Schemes. Springer-Verlag. ISBN 0-387-98637-5. 
  3. Boyer, Carl B. (1991). Archimedes of Syracuse. A History of Mathematics (вид. 2nd). John Wiley & Sons, Inc. ISBN 0471543977. 
  4. George G. Joseph (2000), The Crest of the Peacock, pp. 298–300, Princeton University Press, ISBN 0-691-00659-8
  5. J. L. Berggren (1990), «Innovation and Tradition in Sharaf al-Din al-Tusi's Muadalat», Journal of the American Oriental Society 110 (2): 304-9
  6. Джон Дж. О'Коннор та Едмунд Ф. Робертсон. Sharaf al-Din al-Muzaffar al-Tusi в архіві MacTutor (англ.)

Література[ред.ред. код]

  • С. Т. Завало (1972). Елементи аналізу. Алгебра многочленів. Київ: Радянська школа. 


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.