Ознака Абеля

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

У математиці ознака Абеля (також відома як критерій Абеля) є методом тестування збіжності нескінченного ряду. Ознака названа на честь математика Нільса Генріка Абеля. Існує дві трохи різні версії ознаки Абеля — одна використовується для рядів дійсних чисел, а інша — для степеневих рядів у комплексному аналізі. Ознака рівномірної збіжності Абеля є критерієм рівномірної збіжності ряду функцій, що залежать від параметрів.

Ознака Абеля збіжності числових рядів[ред. | ред. код]

Нехай виконуються такі умови:

  1. — збіжний ряд,
  2. монотонна послідовність,
  3. — обмежена, тобто для деякого і всіх натуральних

Тоді ряд також є збіжним.

Важливо розуміти, що ця ознака є доречною і корисною у сенсі неабсолютної збіжності ряду . Для абсолютно збіжних рядів ця теорема, хоч і справедлива, але є майже очевидною.

Доведення[ред. | ред. код]

Теорему можна довести безпосередньо з використанням дискретного перетворення Абеля (сумування частинами).

Згідно критерію Коші збіжності числових рядів достатньо довести, що для довільного існує натуральне число для якого для всіх і всіх натуральних чисел виконується нерівність

Нехай — довільне додатне число. Оскільки ряд є збіжним, то згідно ознаки Коші існує натуральне число для якого для всіх і всіх натуральних чисел виконується нерівності:

Якщо у цьому випадку позначити то і можна застосувати нерівність із статті Дискретне перетворення Абеля:

Таким чином для ряд задовольняє умову Коші для числа . Таким чином згідно критерію Коші ряд є збіжним.

Ознака Абеля в комплексному аналізі[ред. | ред. код]

Тісно пов'язана ознака збіжності, також відома як ознака Абеля, часто може використовуватися для встановлення збіжності степеневого ряду на межі його кола збіжності. Зокрема, ознака Абеля стверджує: якщо послідовність додатних дійсних чисел монотонно спадає (або принаймні для всіх , більших за деяке натуральне число , маємо ), причому

тоді степеневий ряд

є збіжним всюди на замкнутому одиничному колі, крім випадку, коли . Ознаку Абеля не можна застосовувати для , тому збіжність у цій окремій точці слід досліджувати окремо. Зауважимо, що з ознаки Абеля випливає, зокрема, що радіус збіжності дорівнює принаймні 1. Вона також може бути застосована до степеневого ряду з радіусом збіжності за допомогою простої заміни змінних .[1] Зауважимо, що ознака Абеля є узагальненням ознаки Лейбніца, якщо взяти .

Доведення ознаки Абеля: Припустимо, що точка належить одиничному колу, . Для кожного значення визначимо

Помноживши цю функцію на , отримаємо

Перший доданок — константа, другий доданок — рівномірно збігається до нуля (оскільки за припущенням послідовність збігається до нуля). Необхідно лише довести, що ряд збігається. Покажемо, що цей ряд є абсолютно збіжним:

де остання сума — це збіжний телескопічний ряд. Модуль опущено, оскільки за припущенням послідовність — спадна.

Звідси, послідовність збігається (навіть рівномірно) на закритому одиничному крузі. Якщо , то можна поділити на і отримуємо результат.

Ознаки рівномірної збіжності Абеля[ред. | ред. код]

Ознака рівномірної збіжності Абеля є критерієм рівномірної збіжності ряду функцій або невласних інтегралів для функцій, що залежать від параметрів. Це пов'язано з ознакою Абеля збіжності звичайного ряду дійсних чисел, і доведення опирається на ту ж техніку дискретного перетворення Абеля.

Ознака наступна: Нехай рівномірно обмежена послідовність дійснозначних неперервних функцій на множині така, що для всіх та натуральних чисел , і нехай — послідовність дійснозначних функцій таких, що ряд рівномірно збігається на . Тоді ряд рівномірно збігається на .

Ознака Абеля збіжності невласних інтегралів[ред. | ред. код]

Ознака Абеля для нескінченного проміжку. Нехай функції і визначені на проміжку . Тоді невласний інтеграл є збіжним, якщо виконуються такі умови:

  1. Функція є інтегровна на .
  2. Функція обмежена і монотонна.

Див. також[ред. | ред. код]

Примітки[ред. | ред. код]

  1. (Moretti, 1964, p. 91)

Література[ред. | ред. код]

  • Григорій Михайлович Фіхтенгольц. Курс диференціального та інтегрального числення. — 2023. — 1900+ с.(укр.)
  • Gino Moretti, Functions of a Complex Variable, Prentice-Hall, Inc., 1964
  • Apostol, Tom M. (1974), Mathematical analysis (вид. 2nd), Addison-Wesley, ISBN 978-0-201-00288-1
  • Weisstein, Eric W. Abel's uniform convergence test(англ.) на сайті Wolfram MathWorld.