Алгебра Лі

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Алгебра Лі — векторний простір, на якому визначена операція комутації. Для елементів алгебри визначені лінійні операції — додавання і множення на число (існує дійсна і комплексна алгебри Лі — з множенням відповідно на дійсні та комплексні числа). Операція комутування зіставляє будь-яким двом елементам алгебри третій Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle [X,Y]} . Ця операція білінійна (лінійна по кожному з елементів), антисиметрична Неможливо розібрати вираз (MathML з переходом на SVG чи PNG (рекомендовано для сучасних браузерів та інструментів покращення доступу): Недійсна відповідь («Math extension cannot connect to Restbase.») від сервера «/mathoid/local/v1/»:): {\displaystyle [X,Y] = - [Y,X]} і задовільняє тотожності Якобі:

.

Поняття алгебри Лі виникло у зв'язку з вивченням груп Лі, оскільки елементи групи Лі можна представляти у вигляді експонент від елементів алегбри Лі (базисні елементи в цьому разі називатимуться генераторами відповідної групи). Якщо група Лі реалізована як група матриць, то відповідна їй алгебра Лі теж є матричною. Це означає, що кожний елемент алгебри є матрицею, а операція комутування визначення як звичайний комутатор .

Література[ред.ред. код]


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.