Загальна лінійна модель

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Загальна лінійна модель є статистичною лінійною моделлю. Це можна записати у вигляді:
\mathbf{Y} = \mathbf{X}\mathbf{B} + \mathbf{U},,
де Y - це матриця з серії багатовимірних вимірів, X - матриця, яка може бути матриця розрахунку, B являє собою матрицю, параметри якої, як правило, повинні бути оцінені та U представляє собою матрицю, яка містить помилки або шум. Помилки, як правило, є наслідком багатовимірного нормального розподілу. Якщо помилки не йдуть за багатовимірним нормальним розподілом, узагальнені лінійні моделі можуть бути використані, щоб спростити припущення про Y та U. Загальна лінійна модель включає в себе цілий ряд різних статистичних моделей: ANOVA, ANCOVA, MANOVA, MANCOVA, звичайні лінійної регресії, Т-тест і F-тест. Повна лінійна модель є узагальненням моделі множинної лінійної регресії на випадок більш однієї залежної змінної. Якщо Y, B і U були б вектор-стовпчиками, то матричне рівняння, що наведене вище представлятиме множинну лінійну регресію. Тести гіпотези з загальною лінійною моделлю можуть бути зроблені двома способами: або як багатовимірний або як кілька незалежних одновимірних тестів. У багатовимірному тесті стовпців Y провіряють разом, тоді як в одновимірному тесті стовпці Y перевіряють незалежно, тобто як безліч одновимірних тестів з тією ж матрицею розрахунку.

Множинна лінійна регресія[ред.ред. код]

Множинна лінійна регресія є узагальненням лінійної регресії з урахуванням більш ніж однієї незалежної змінної, а окремий випадок загальної лінійної моделі формується за рахунок обмеження кількості залежних змінних до одного. Базовою моделлю для лінійної регресії є:
 Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \ldots + \beta_p X_{ip} + \epsilon_i.
У наведеній вище формулі ми вважаємо n спостережень одної залежної змінної і p незалежних змінних. Таким чином, Yi спостереження i залежної змінної, Xij є спостереженням j незалежної змінної, j = 1, 2, ..., p . Значення βj представляють параметри, що підлягають оцінці, і εi є i-та незалежна однаково розподілена нормальна похибка.

Застосування[ред.ред. код]

Застосування загальної лінійної моделі з'являється в аналізі численних сканувань головного мозку в наукових експериментах, де Y містить дані від сканерів мозку, X містить експериментальні змінні. Як правило, це перевіряється одновимірним способом (зазвичай названий масово-одномірним в цьому параметрі) і часто згадується як статистичне параметричне відображень.

Дивіться також:[ред.ред. код]

Регресійний аналіз