Математичний аналіз

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Математи́чний ана́ліз — фундаментальний розділ математики, що веде свій відлік від XVII століття, коли було строго сформульовано теорію нескінченно малих.[1] Сучасний математичний аналіз включає в себе також теорію функцій, теорії границь і рядів, диференційне та інтегральне числення, диференціальні рівняння та диференціальну геометрію. Математичний аналіз постав визначною віхою в історії науки і сформував обличчя сучасної математики. Аналіз швидко перетворився на надзвичайно потужний інструмент для дослідників природничих наук, а також став одним із рушіїв науково-технічної революції.

Наступним витком у розвитку математичного аналізу став сформований на початку XX століття функціональний аналіз. Якщо класичний аналіз вважає змінну числом — тобто елементом із множини дійсних (або комплексних) чисел, то в функціональному аналізі вже сама функція розглядається як змінна. Одночасно вводиться поняття функціоналу — узагальненої функції, що може приймати іншу функцію в якості аргументу (функція від функції). У сучасному формулюванні, функціональний аналіз є застосуванням теорії аналізу до довільного простору математичних об'єктів, в якому можливо визначити поняття близькості (топологічний простір), або ж відстані (метричний простір) між об'єктами.[2]

Історія виникнення[ред.ред. код]

В історії математики можна умовно виділити два основні періоди: елементарної та сучасної математики. Межею, від якої ведеться відлік епохи нової (іноді — вищої) математики, стало XVII століття. Саме в XVII столітті з'явився математичний аналіз. Предтечами його було числення нескінченно малих в роботах Валліса, Грегорі, Барроу. До кінця XVII ст. Ісааком Ньютоном, Готфрідом Лейбніцом було створено апарат диференційного та інтегрального числення, що становить основу математичного аналізу і навіть математичну основу всього сучасного природознавства.

Рух, змінні величини і їхній взаємозв'язок оточують нас усюди. Різні види руху, їхні закономірності становлять основний об'єкт вивчення конкретних наук: фізики, геології, біології, соціології тощо. Точна мова і відповідні математичні методи опису і вивчення таких величин виявилися необхідними в усіх областях знань приблизно як числа й арифметика необхідні для опису кількісних співвідношень. Тому математичний аналіз став основою мови і математичних методів опису змінних величин та зв'язків між ними. В наші дні без математичного аналізу неможливо було б не тільки розрахувати космічні траєкторії, роботу ядерних реакторів, закономірності розвитку циклону, а й ефективно керувати виробництвом, розподілом ресурсів, організацією технологічних процесів, бо все це — динамічні процеси.

Елементарна математика була переважно математикою постійних величин, вона вивчала головним чином співвідношення між елементами геометричних фігур, арифметичні властивості чисел і алгебраїчні рівняння.

В кінці XVIIстоліття довколо Лейбніца виникає гурток, найвідомішими представниками якого були брати Бернуллі, і Лопіталь. В 1696, використовуючи лекції Й. Бернуллі, Лопіталь написав перший підручник, що викладав новий метод у використанні до теорії плоских кривих. Він назвав його Аналізом нескінченно малих, даючи тим самим і одну з назв новому розділу в математиці. В основу викладення покладений термін змінних величин, між якими існує певний зв'язок, через який зміна одної тягне за собою зміну іншої. У Лопіталя цей зв'язок дається за допомогою плоских кривих: якщо M - рухома точка плоскої кривої, то її декартові координати x та y, що мають назви діаметр та ордината кривої, змінні, при чому зміна x спричинює зміну y.

Передумови появи математичного аналізу[ред.ред. код]

До кінця XVII ст. склалася ситуація коли в математиці було накопичено знання про розв'язки деяких важливих класів задач (наприклад, задачі про обчислення площ і об'ємів нестандартних фігур, задача проведення дотичних до кривих), а також з'явилися методи розв'язання різних часткових випадків. Виявилося, що ці задачі тісно пов'язані з задачами опису деякого (не обов'язково рівномірного) механічного руху, й зокрема обчислення його миттєвих характеристик (швидкості, прискорення в будь-який момент часу), а також знаходження пройденого шляху при русі, що відбувається з заданою змінною швидкістю. Розв'язок цих задач був необхідним для подальшого розвитку фізики, астрономії, техніки. До середини XVII ст. в працях Рене Декарта і П'єра Ферма було закладено основи аналітичного методу координат (так званої аналітичної геометрії), які дозволили сформулювати різноманітні за своїм походженням геометричні і фізичні задачі загальною мовою чисел і числових залежностей (числових функцій).

Всі ці обставини призвели до того, що наприкінці XVII ст. двом ученим Ісааку Ньютону і Готфріду Лейбніцу, незалежно один від одного, вдалося створити математичний апарат для розв'язку вказаних задач. У своїх працях ці вчені зібрали й узагальнили окремі результати попередників починаючи від Архімеда і закінчуючи своїми сучасниками, такими як: Бонавентура Кавальєрі, Блез Паскаль, Джеймс Грегорі, Ісаак Барроу. Цей апарат і склав основу математичного аналізу — нового розділу математики, який вивчає різні динамічні процеси, тобто взаємозв'язки змінних величин, які математики називають функціональними залежностями чи функціями.

Віхи розвитку математичного аналізу[ред.ред. код]

Поняття функції запровадив у XVIII ст. Леонард Ейлер[3]. Упродовж XVIII ст. були розвинуті різноманітні методи аналізу, що збагатили диференціальне та інтегральне числення: варіаційне числення, теорія рядів, теорія звичайних диференціальних рівнянь.

Аналіз функцій дійсної змінної почав набирати ознак окремого розділу математики, коли Бернард Больцано дав сучасне означення неперервності у 1816[4], хоча роботи Больцано не отримали широкої відомості до 1870-их. З 1821 Огюстен Коші почав формувати міцне логічне підґрунтя під математичним аналізом, формулюючи його через поняття нескінченно малих. Йому також належать поняття фундаментальної послідовності і основи аналізу комплексної змінної. Симеон Пуасон, Жозеф Ліувіль, Жозеф Фур'є та інші вивчали диференціальні рівняння і гармонічний аналіз. Завдяки внеску цих та інших математиків, таких як Карл Веєрштрас розвинувся епсилонний підхід, який є основою сучасного математичного аналізу. Зразком такого підходу є означення границі функції через  \varepsilon та  \delta .

Усередині XIX століття Бернгард Ріман розвинув теорію інтегрування. Надалі математиків почало бентежити те, що вони припускають існування континууму дійсних чисел без доказу. Розв'язуючи цю проблему, Ріхард Дедекінд сконструював означення ірраціонального числа як переріз Дедекінда, таким чином заповнивши «прогалини» в раціональних числах і утворивши повний метричний простір: континуум дійсних чисел. Приблизно тоді ж спроби уточнити теореми інтегрування за Ріманом призвели до вивчення розривів дійсних функцій.

Почали виникати математичні чудовиська, такі як ніде не неперервна функція Діріхле, неперервна, але ніде не диференційована функція Веєрштраса, криві, що повністю заповнюють площину на кшталт кривої Пеано. Розв'язуючи проблеми з такими функціями, Каміль Жордан побудував теорію міри Жордана, а Георг Кантор розвинув інтуїтивну теорію множин. На початку 20 століття математичний аналіз був формалізований теорією множин. Анрі Лебег розв'язав проблему міри, а Давид Гільберт запровадив гільбертів простір. Виникла ідея нормованого векторного простору, і в 1920-их Стефан Банах започаткував функціональний аналіз.

Викладання математичного аналізу у вищій школі[ред.ред. код]

Математичний аналіз входить у загальний курс вищої математики в більшості технічних вишів України поряд із іншими розділами математики, такими як аналітична геометрія, теорія диференціальних рівнянь, теорія ймовірностей тощо. Для тих спеціальностей, що потребують підвищеного вміння користуватися математичним апаратом, наприклад для фізиків, математичний аналіз викладається окремим курсом.

Обсяг матеріалу включає:

Вивчення математичного аналізу закладає основи для подального вивчення суміжних дисциплін математики: комплексного аналізу, диференціальної геометрії, теорії звичайних диференціальних рівнянь та диференціальних рівнянь з частковими похідними, що підводить до вивчення задач математичної фізики та функціонального аналізу.

Див. також[ред.ред. код]

Посилання[ред.ред. код]

  1. Українська радянська енциклопедія. В 12-ти томах / За ред. М. Бажана. — 2-ге вид. — К.: Гол. редакція УРЕ, 1974-1985., т. 1, Аналіз математичний
  2. * Александров А. Д., Колмогоров А. Н., Лаврентьев М. А. Математика, её содержание, методы и значение. т. 1. — Видавництво Академії наук СРСР, 1956 (рос.)
  3. Dunham, William (1999). Euler: The Master of Us All. The Mathematical Association of America. с. 17. 
  4. *Cooke, Roger (1997). «Beyond the Calculus». The History of Mathematics: A Brief Course. Wiley-Interscience. с. 379. ISBN 0471180823. «Дійсний аналіз переріс у окрему дисципліну із запровадження сучасного означення неперервності у 1816 чеським математиком Бернардом Больцано (1781-1848)» 

Література[ред.ред. код]

Основні розділи Математики
АлгебраДискретна математикаДиференціальні рівнянняГеометріяКомбінаторикаЛінійна алгебраМатематична логікаМатематична статистикаМатематичний аналізТеорія ймовірностейТеорія множинТеорія чиселТригонометріяМатематична фізикаТопологіяФункціональний аналізРекреаційна математика